|   | 
Details
   web
Records
Author Cui, Z.F.; Zhang, J.L.; Binosi, D.; De Soto, F.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.; Segovia, J.; Zafeiropoulos, S.
Title Effective charge from lattice QCD Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 8 Pages 083102 - 10pp
Keywords running coupling; quantum chromodynamics; Dyson-Schwinger equations; lattice field theory; emergence of mass; confinement
Abstract (down) Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD 's renormalisation-group-invariant process-independent effective charge, (alpha) over cap (k(2)). Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, m(0) = 0.43(1) GeV, this coupling saturates at infrared momenta: (alpha) over cap/pi = 0.97(4). Amongst other things: (alpha) over cap (k(2)) is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton distribution functions computed at the hadronic scale and experiment. The diversity of unifying roles played by (alpha) over cap (k(2)) suggests that it is a strong candidate for that object which represents the interaction strength in QCD at any given momentum scale; and its properties support a conclusion that QCD is a mathematically well-defined quantum field theory in four dimensions.
Address [Cui, Z-F; Roberts, C. D.] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China, Email: cdroberts@nju.edu.cn;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000557419600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4495
Permanent link to this record
 

 
Author Aguilar, A.C. et al; Papavassiliou, J.
Title Pion and kaon structure at the electron-ion collider Type Journal Article
Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 55 Issue 10 Pages 190 - 15pp
Keywords
Abstract (down) Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe.
Address [Aguilar, Arlene C.] Univ Campinas UNICAMP, Inst Phys Gled Wataghin, BR-13083859 Campinas, SP, Brazil, Email: ent@jlab.org;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000499964100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4212
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Mamuzic, J.; Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title First Search for Dyons with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 126 Issue 7 Pages 071801 - 7pp
Keywords
Abstract (down) The MoEDAL trapping detector consists of approximately 800 kg of aluminum volumes. It was exposed during run 2 of the LHC program to 6.46 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminum volumes comprising the detector through a superconducting quantum interference device (SQUID) magnetometer. The presence of a trapped dyon would be signaled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to five Dirac charges (5g(D)) and an electric charge up to 200 times the fundamental electric charge for mass limits in the range 870-3120 GeV and also monopoles with magnetic charge up to and including 5g(D) with mass limits in the range 870-2040 GeV.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England, Email: jpinfold@ualberta.ca
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000620021300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4723
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.; Santos, L.R.
Title Schwinger poles of the three-gluon vertex: symmetry and dynamics Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 10 Pages 889 - 20pp
Keywords
Abstract (down) The implementation of the Schwinger mechanism endows gluons with a nonperturbative mass through the formation of special massless poles in the fundamental QCD vertices; due to their longitudinal character, these poles do not cause divergences in on-shell amplitudes, but induce detectable effects in the Green's functions of the theory. Particularly important in this theoretical setup is the three-gluon vertex, whose pole content extends beyond the minimal structure required for the generation of a gluon mass. In the present work we analyze these additional pole patterns by means of two distinct, but ultimately equivalent, methods: the Slavnov-Taylor identity satisfied by the three-gluon vertex, and the nonlinear Schwinger-Dyson equation that governs the dynamical evolution of this vertex. Our analysis reveals that the Slavnov-Taylor identity imposes strict model-independent constraints on the associated residues, preventing them from vanishing. Approximate versions of these constraints are subsequently recovered from the Schwinger-Dyson equation, once the elements responsible for the activation of the Schwinger mechanism have been duly incorporated. The excellent coincidence between the two approaches exposes a profound connection between symmetry and dynamics, and serves as a nontrivial self-consistency test of this particular mass generating scenario.
Address [Aguilar, A. C.; Oliveira, B. M.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001118963200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5861
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J.
Title Nonperturbative structure of the ghost-gluon kernel Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 3 Pages 034026 - 26pp
Keywords
Abstract (down) The ghost-gluon scattering kernel is a special correlation function that is intimately connected with two fundamental vertices of the gauge sector of QCD: the ghost-gluon vertex, which may be obtained from it through suitable contraction, and the three-gluon vertex, whose Slavnov-Taylor identity contains that kernel as one of its main ingredients. In this work we present a detailed nonperturbative study of the five form factors comprising it, using as the starting point the “one-loop dressed” approximation of the dynamical equations governing their evolution. The analysis is carried out for arbitrary Euclidean momenta and makes extensive use of the gluon propagator and the ghost dressing function, whose infrared behavior has been firmly established from a multitude of continuum studies and large-volume lattice simulations. In addition, special Ansatze are employed for the vertices entering in the relevant equations, and their impact on the results is scrutinized in detail. Quite interestingly, the veracity of the approximations employed may be quantitatively tested by appealing to an exact relation, which fixes the value of a special combination of the form factors under construction. The results obtained furnish the two form factors of the ghostgluon vertex for arbitrary momenta and, more importantly, pave the way toward the nonperturbative generalization of the Ball-Chiu construction for the longitudinal part of the three-gluon vertex.
Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000459909200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3928
Permanent link to this record
 

 
Author Aguilar, A.C.; Ibañez, D.; Mathieu, V.; Papavassiliou, J.
Title Massless bound-state excitations and the Schwinger mechanism in QCD Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 1 Pages 014018 - 21pp
Keywords
Abstract (down) The gauge-invariant generation of an effective gluon mass proceeds through the well-known Schwinger mechanism, whose key dynamical ingredient is the nonperturbative formation of longitudinally coupled massless bound-state excitations. These excitations introduce poles in the vertices of the theory, in such a way as to maintain the Slavnov-Taylor identities intact in the presence of massive gluon propagators. In the present work we first focus on the modifications induced to the nonperturbative three-gluon vertex by the inclusion of massless two-gluon bound states into the kernels appearing in its skeleton expansion. Certain general relations between the basic building blocks of these bound states and the gluon mass are then obtained from the Slavnov-Taylor identities and the Schwinger-Dyson equation governing the gluon propagator. The homogeneous Bethe-Salpeter equation determining the wave function of the aforementioned bound state is then derived, under certain simplifying assumptions. It is then shown, through a detailed analytical and numerical study, that this equation admits nontrivial solutions, indicating that the QCD dynamics support indeed the formation of such massless bound states. These solutions are subsequently used, in conjunction with the aforementioned relations, to determine the momentumdependence of the dynamical gluon mass. Finally, further possibilities and open questions are briefly discussed.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000299293600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 881
Permanent link to this record
 

 
Author Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J.
Title Quark gap equation with non-Abelian Ball-Chiu vertex Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 1 Pages 014002 - 15pp
Keywords
Abstract (down) The full quark-gluon vertex is a crucial ingredient for the dynamical generation of a constituent quark mass from the standard quark gap equation, and its nontransverse part may be determined exactly from the nonlinear Slav nov-Taylor identity that it satisfies. The resulting expression involves not only the quark propagator, but also the ghost dressing function and the quark-ghost kernel, and constitutes the non-abelian extension of the so-called “Ball-Chiu vertex,” known from QED. In the present work we carry out a detailed study of the impact of this vertex on the gap equation and the quark masses generated from it, putting particular emphasis on the contributions directly related with the ghost sector of the theory, and especially the quark-ghost kernel. In particular, we set up and solve the coupled system of six equations that determine the four form factors of the latter kernel and the two typical Dirac structures composing the quark propagator. Due to the incomplete implementation of the multiplicative renormalizability at the level of the gap equation, the correct anomalous dimension of the quark mass is recovered through the inclusion of a certain function, whose ultraviolet behavior is fixed, but its infrared completion is unknown; three particular Ansatze for this function are considered, and their effect on the quark mass and the pion decay constant is explored. The main results of this study indicate that the numerical impact of the quark-ghost kernel is considerable; the transition from a tree-level kernel to the one computed hem leads to a 20% increase in the value of the quark mass at the origin. Particularly interesting is the contribution of the fourth Ball-Chiu form factor, which, contrary to the Abelian case, is nonvanishing, and accounts for 10% of the total constituent quark mass.
Address [Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000436941600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3642
Permanent link to this record
 

 
Author Ferreira, M.N.; Papavassiliou, J.
Title Gauge Sector Dynamics in QCD Type Journal Article
Year 2023 Publication Particles Abbreviated Journal Particles
Volume 6 Issue 1 Pages 312-363
Keywords continuum Schwinger function methods; emergence of hadron mass; gluon mass generation; lattice QCD; non-perturbative quantum field theory; quantum chromodynamics; Schwinger-Dyson equations; Schwinger mechanism
Abstract (down) The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are crucial for the internal consistency of the theory; most notably, they account for the generation of a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex. In the present work, we review some key advances in the ongoing investigation of this sector within the framework of the continuum Schwinger function methods, supplemented by results obtained from lattice simulations.
Address [Ferreira, Mauricio Narciso; Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: ansonar@uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000959126400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5504
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Ibañez, D.; Oliveira, B.M.; Papavassiliou, J.
Title Patterns of gauge symmetry in the background field method Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 1 Pages 86 - 20pp
Keywords
Abstract (down) The correlation functions of Yang-Mills theories formulated in the background field method satisfy linear Slavnov-Taylor identities, which are naive generalizations of simple tree level relations, with no deformations originating from the ghost-sector of the theory. In recent years, a stronger version of these identities has been found to hold at the level of the background gluon self-energy, whose transversality is enforced separately for each special block of diagrams contributing to the gluon Schwinger-Dyson equation. In the present work we demonstrate by means of explicit calculations that the same distinct realization of the Slavnov-Taylor identity persists in the case of the background three-gluon vertex. The analysis is carried out at the level of the exact Schwinger-Dyson equation for this vertex, with no truncations or simplifying assumptions. The demonstration entails the contraction of individual vertex diagrams by the relevant momentum, which activates Slavnov-Taylor identities of vertices and multi-particle kernels nested inside these graphs; the final result emerges by virtue of a multitude of extensive cancellations, without the need of performing explicit integrations. In addition, we point out that background Ward identities amount to replacing derivatives of propagators by zero-momentum background-gluon insertions, in exact analogy to standard properties of Abelian gauge theories. Finally, certain potential applications of these results are briefly discussed.
Address [Aguilar, A. C.; Oliveira, B. M.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000923274000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5481
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Ibañez, D.; Papavassiliou, J.
Title Schwinger displacement of the quark-gluon vertex Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 10 Pages 967 - 22pp
Keywords
Abstract (down) The action of the Schwinger mechanism in pure Yang-Mills theories endows gluons with an effective mass, and, at the same time, induces a measurable displacement to the Ward identity satisfied by the three-gluon vertex. In the present work we turn to Quantum Chromodynamics with two light quark flavors, and explore the appearance of this characteristic displacement at the level of the quark-gluon vertex. When the Schwinger mechanism is activated, this vertex acquires massless poles, whose momentum-dependent residues are determined by a set of coupled integral equations. The main effect of these residues is to displace the Ward identity obeyed by the pole-free part of the vertex, causing modifications to its form factors, and especially the one associated with the tree-level tensor. The comparison between the available lattice data for this form factor and the Ward identity prediction reveals a marked deviation, which is completely compatible with the theoretical expectation for the attendant residue. This analysis corroborates further the self-consistency of this mass-generating scenario in the general context of real-world strong interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6080
Permanent link to this record