|   | 
Details
   web
Records
Author Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J.
Title Gluon mass scale through nonlinearities and vertex interplay Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 9 Pages 094039 - 19pp
Keywords
Abstract (down) We present a novel analysis of the gluon gap equation, where its full nonlinear structure is duly taken into account. In particular, while in previous treatments the linearization of this homogeneous integral equation introduced an indeterminacy in the scale of the corresponding mass, the current approach determines it uniquely, once the value of the gauge coupling at a given renormalization point is used as input. A crucial ingredient for this construction is the “kinetic term” of the gluon propagator, whose form is not obtained from the complicated equation governing its evolution, but is rather approximated by suitable initial Ansatze, which are subsequently improved by means of a systematic iterative procedure. The multiplicative renormalization of the central equation is carried out following an approximate method, which is extensively employed in the studies of the standard quark gap equation. This approach amounts to the effective substitution of the vertex renormalization constants by kinematically simplified form factors of the three- and four-gluon vertices. The resulting numerical interplay, exemplified by the infrared suppression of the three-gluon vertex and the mild enhancement of the four-gluon vertex, is instrumental for obtaining positive-definite and monotonically decreasing running gluon masses. The resulting gluon propagators, put together from the gluon masses and kinetic terms obtained with this method, match rather accurately the data obtained from large-volume lattice simulations.
Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000498877900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4208
Permanent link to this record
 

 
Author Lessa, A.; Sanz, V.
Title Going beyond Top EFT Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 107 - 29pp
Keywords SMEFT; Dark Matter at Colliders; Supersymmetry
Abstract (down) We present a new way to interpret Top Standard Model measurements going beyond the SMEFT framework. Instead of the usual paradigm in Top EFT, where the main effects come from tails in momenta distributions, we propose an interpretation in terms of new physics which only shows up at loop-level. The effects of these new states, which can be lighter than required within the SMEFT, appear as distinctive structures at high momenta, but may be suppressed at the tails of distributions. As an illustration of this phenomena, we present the explicit case of a UV model with a Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} 2 symmetry, including a Dark Matter candidate and a top-partner. This simple UV model reproduces the main features of this class of signatures, particularly a momentum-dependent form factor with more structure than the SMEFT. As the new states can be lighter than in SMEFT, we explore the interplay between the reinterpretation of direct searches for colored states and Dark Matter, and Top measurements, made by ATLAS and CMS in the differential t t over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} final state. We also compare our method with what one would expect using the SMEFT reinterpretation, finding that using the full loop information provides a better discriminating power.
Address [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: andre.lessa@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001205498200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6108
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G.; Urtasun-Elizari, J.
Title Higgs boson production at the LHC: fast and precise predictions in QCD at higher orders Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 5 Pages 492 - 8pp
Keywords
Abstract (down) We present a new numerical program, HTurbo, which provides fast and numerically precise predictions for Higgs boson production cross sections. The present version of the code implements the perturbative QCD expansion up to the next-to-next-to-leading order also combined with the resummation of the large logarithmic corrections at small transverse momenta up to next-to-next-to-leading logarithmic accuracy and it includes the Higgs boson production through gluon fusion and decay in two photons with the full dependence on the final-state kinematics. Arbitrary kinematical cuts can be applied to the final states in order to obtain fiducial cross sections and associated kinematical distributions. We present a benchmark comparison with the predictions obtained with the numerical programs HRes and HNNLO programs for which HTurbo represents an improved reimplementation.
Address [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: giancarlo.ferrera@mi.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000800789000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5234
Permanent link to this record
 

 
Author Elor, G.; Escudero, M.; Nelson, A.E.
Title Baryogenesis and dark matter from B mesons Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 3 Pages 035031 - 18pp
Keywords
Abstract (down) We present a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral B meson oscillations and subsequent decays. This setup is testable at hadron colliders and B factories. In the early universe, decays of a long lived particle produce B mesons and antimesons out of thermal equilibrium. These mesons/antimesons then undergo CP violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under the baryon number so that the visible sector baryon asymmetry is produced without violating the total baryon number of the Universe. The produced baryon asymmetry will be directly related to the leptonic charge asymmetry in neutral B decays: an experimental observable. Dark matter is stabilized by an unbroken discrete symmetry, and proton decay is simply evaded by kinematics. We will illustrate this mechanism with a model that is unconstrained by dinucleon decay, does not require a high reheat temperature, and would have unique experimental signals-a positive leptonic asymmetry in B meson decays, a new decay of B mesons into a baryon and missing energy, and a new decay of b-flavored baryons into mesons and missing energy. These three observables are testable at current and upcoming collider experiments, allowing for a distinct probe of this mechanism.
Address [Elor, Gilly; Nelson, Ann E.] Univ Washington, Dept Phys, Box 1560, Seattle, WA 98195 USA, Email: gelor@uw.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000459208700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3916
Permanent link to this record
 

 
Author Aparisi, J.; Fuster, J.; Irles, A.; Rodrigo, G.; Vos, M.; Yamamoto, H.; Hoang, A.; Lepenik, C.; Spira, M.; Tairafune, S.; Yonamine, R.
Title m(b) at m(H): The Running Bottom Quark Mass and the Higgs Boson Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 12 Pages 122001 - 7pp
Keywords
Abstract (down) We present a new measurement of the bottom quark mass in the MS scheme at the renormalization scale of the Higgs boson mass from measurements of Higgs boson decay rates at the LHC: -0.31 GeV. The measurement has a negligible theory uncertainty and excellent prospects to improve at the HL-LHC and a future Higgs factory. Confronting this result and mb(mb) from low-energy measurements and mb(mZ) from Z-pole data, with the prediction of the scale evolution of the renormalization group equations, we find strong evidence for the “running” of the bottom quark mass.
Address [Aparisi, Javier; Fuster, Juan; Irles, Adrian; Rodrigo, German; Vos, Marcel; Yamamoto, Hitoshi] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000782852800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5200
Permanent link to this record