|   | 
Details
   web
Records
Author Bonilla, C.; Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R.
Title Dark matter stability and Dirac neutrinos using only standard model symmetries Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 3 Pages 033011 - 5pp
Keywords
Abstract (down) We provide a generic framework to obtain stable dark matter along with naturally small Dirac neutrino masses generated at the loop level. This is achieved through the spontaneous breaking of the global U(1)(B-L) symmetry already present in the standard model. The U(1)(B-L) symmetry is broken down to a residual even Z(n) (n >= 4) subgroup. The residual Z(n) symmetry simultaneously guarantees dark matter stability and protects the Dirac nature of neutrinos. The U(1)(B-L) symmetry in our setup is anomaly free and can also be gauged in a straightforward way. Finally, we present an explicit example using our framework to show the idea in action.
Address [Bonilla, Cesar] Tech Univ Munich, Phys Dept T30d, James Franck Str, D-85748 Garching, Germany, Email: cesar.bonilla@tum.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000517243100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4308
Permanent link to this record
 

 
Author Centelles Chulia, S.; Herrero-Brocal, A.; Vicente, A.
Title The Type-I Seesaw family Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 060 - 35pp
Keywords Lepton Flavour Violation (charged); New Light Particles; Non-Standard Neutrino Properties; Specific BSM Phenomenology
Abstract (down) We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as μ-> e gamma, predict sizable rates for decays including the majoron in the final state.
Address [Centelles Chulia, Salvador] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001264784900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6201
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R.
Title Systematic classification of two-loop d=4 Dirac neutrino mass models and the Diracness-dark matter stability connection Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 093 - 33pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We provide a complete systematic classification of all two-loop realizations of the dimension four operator for Dirac neutrino masses. Our classification is multi-layered, starting first with a classification in terms of all possible distinct two loop topologies. Then we discuss the possible diagrams for each topology. Model-diagrams originating from each diagram are then considered. The criterion for genuineness is also defined and discussed at length. Finally, as examples, we construct two explicit models which also serve to highlight the intimate connection between the Dirac nature of neutrinos and the stability of dark matter.
Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000491092500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4181
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A.
Title Disentangling Genuine from Matter-Induced CP Violation in Neutrino Oscillations Type Journal Article
Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 121 Issue 21 Pages 211802 - 5pp
Keywords
Abstract (down) We prove that, in any flavor transition, neutrino oscillation CP-violating asymmetries in matter have two disentangled components: (i) a CPT-odd T-invariant term, non-vanishing iff there are interactions with matter, and (ii) a T-odd CPT-invariant term, non-vanishing iff there is genuine CP violation. As function of the baseline, these two terms are distinct L-even and L-odd observables to separately test (i) matter effects sensitive to the neutrino hierarchy and (ii) genuine CP violation in the neutrino sector. For the golden nu(mu) -> nu(e) channel, the different energy distributions of the two components provide a signature of their separation. At long baselines, they show oscillations in the low and medium energy regions, with zeros at different positions and peculiar behavior around the zeros. We discover a magic energy E = (0.91 +/- 0.01) GeV at L = 1300 km with vanishing CPT-odd component and maximal genuine CP asymmetry proportional to sin delta, with delta the weak CP phase. For energies above 1.5 GeV, the sign of the CP asymmetry discriminates the neutrino hierarchy.
Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000451010600005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3815
Permanent link to this record
 

 
Author Barenboim, G.; Bosch, C.; Lopez-Ibañez, M.L.; Vives, O.
Title Eviction of a 125 GeV “heavy”-Higgs from the MSSM Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 051 - 39pp
Keywords Higgs Physics; Beyond Standard Model; Supersymmetric Standard Model
Abstract (down) We prove that the present experimental constraints are already enough to rule out the possibility of the similar to 125 GeV Higgs found at LHC being the second lightest Higgs in a general MSSM context, even with explicit CP violation in the Higgs potential. Contrary to previous studies, we are able to eliminate this possibility analytically, using simple expressions for a relatively small number of observables. We show that the present LHC constraints on the diphoton signal strength, tau tau production through Higgs and BR(B -> X-s gamma) are enough to preclude the possibility of H-2 being the observed Higgs with m(H) similar or equal to 125 GeV within an MSSM context, without leaving room for finely tuned cancellations. As a by-product, we also comment on the difficulties of an MSSM interpretation of the excess in the gamma gamma production cross section recently found at CMS that could correspond to a second Higgs resonance at m(H) similar or equal to 136 GeV.
Address [Barenboim, G.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000326721200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1652
Permanent link to this record