toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Morfin, J.G.; Nieves, J.; Sobczyk, J.T. url  doi
openurl 
  Title Recent Developments in Neutrino/Antineutrino-Nucleus Interactions Type Journal Article
  Year 2012 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2012 Issue Pages 934597 - 35pp  
  Keywords  
  Abstract (up) Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1-10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.  
  Address [Morfin, Jorge G.; Sobczyk, Jan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: morfin@fnal.gov  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313175200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1302  
Permanent link to this record
 

 
Author Lu, J.X.; Chen, H.X.; Guo, Z.H.; Nieves, J.; Xie, J.J.; Geng, L.S. url  doi
openurl 
  Title Lambda(c)(2595) resonance as a dynamically generated state: The compositeness condition and the large N-c evolution Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 11 Pages 114028 - 16pp  
  Keywords  
  Abstract (up) Recent studies have shown that the well-established Lambda(c) (2595) resonance contains a large meson-baryon component, which can vary depending on the specific formalism. In this work, we examine such a picture by utilizing the compositeness condition and the large number of colors (N-c) expansion. We examine three different models fulfilling two body unitarily in coupled-channels, and adopting renormalization schemes where the mass of the Lambda(c)(2595) resonance is well described, but not necessarily its width, since we do not consider three body channels and work at the isospin symmetric limit. Both approximations might have an effect larger on the width than on the mass. In this context, our studies show that the compositeness of the Lambda(c)(2595) depends on the number of considered coupled channels, and on the particular regularization scheme adopted in the unitary approaches and, therefore, is model dependent. In addition, we perform an exploratory study of the Lambda(c)(2595) in the large N-c expansion, within a scheme involving only the pi Sigma(c) and K Xi(c)', channels, whose dynamics is mostly fixed by chiral symmetry. In this context and formulating the leading-order interaction as a function of N-c, we show that for moderate N-c > 3 values, the mass and width of the Lambda(c)(2595) deviate from those of a genuine qqq baryon, implying the relevance of meson-baryon components in its wave function. Furthermore, we study the properties of the Lambda(c)(2595), in the strict N-c -> infinity limit, using an extension of the chiral Weinberg-Tomozawa interaction to an arbitrary number of flavors and colors. This latter study hints at the possible existence of a (perhaps) subdominant qqq component in the Lambda(c)(2595) resonance wave function, which would become dominant when the number of colors gets sufficiently large.  
  Address [Lu, Jun-Xu; Chen, Hua-Xing; Geng, Li-Sheng] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: lisheng.geng@buaa.edu.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378306600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2745  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Establishing the heavy quark spin and light flavor molecular multiplets of the X(3872), Z(c)(3900), and X(3960) br Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 094002 - 13pp  
  Keywords  
  Abstract (up) Recently, the LHCb Collaboration reported a near-threshold enhancement X(3960) in the D+sD-s invariant mass distribution. We show that the data can be well described by either a bound or a virtual state below the D+sD-s threshold. The mass given by the pole position is (3928 +/- 3) MeV. Using this mass and the existing information on the X(3872) and Zc(3900) resonances, a complete spectrum of the S-wave hadronic molecules formed by a pair of ground state charmed and anticharmed mesons is established. Thus, pole positions of the partners of the X(3872) , Zc(3900) , and the newly observed D+sD-s state are predicted. Calculations have been carried out at the leading order of nonrelativistic effective field theory and considering both heavy quark spin and light flavor SU(3) symmetries, though conservative errors from the breaking of these symmetries are provided.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000886709000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5428  
Permanent link to this record
 

 
Author Sobczyk, J.E.; Rocco, N.; Lovato, A.; Nieves, J. url  doi
openurl 
  Title Scaling within the spectral function approach Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 3 Pages 035506 - 15pp  
  Keywords  
  Abstract (up) Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino-and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of C-12, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.  
  Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Apartado 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428505400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3544  
Permanent link to this record
 

 
Author Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Yao, D.L. url  doi
openurl 
  Title Towards a new paradigm for heavy-light meson spectroscopy Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 9 Pages 094018 - 8pp  
  Keywords  
  Abstract (up) Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451000200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva