Ramirez-Uribe, S., Renteria-Olivo, A. E., Renteria-Estrada, D. F., Martinez de Lejarza, J. J., Dhani, P. K., Cieri, L., et al. (2025). Vacuum amplitudes and time-like causal unitary in the loop-tree duality. J. High Energy Phys., 01(1), 103–24pp.
Abstract: We present the first proof-of-concept application to decay processes at higher perturbative orders of loop-tree duality (LTD) causal unitary, a novel methodology that exploits the causal properties of vacuum amplitudes in the LTD and is directly well-defined in the four physical dimensions of the space-time. The generation of loop- and tree-level contributions to the differential decay rates from a kernel multiloop vacuum amplitude is shown in detail, and explicit expressions are presented for selected processes that are suitable for a lightweight understanding of the method. Specifically, we provide a clear physical interpretation of the local cancellation of soft, collinear and threshold singularities, and of the local renormalisation of ultraviolet singularities. The presentation is illustrated with numerical results that showcase the advantages of the method.
|
Aguilera-Verdugo, J. J., Driencourt-Mangin, F., Plenter, J., Ramirez-Uribe, S., Rodrigo, G., Sborlini, G. F. R., et al. (2019). Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders. J. High Energy Phys., 12(12), 163–12pp.
Abstract: We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.
|
HAWC Collaboration(Albert, A. et al), & Salesa Greus, F. (2020). HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron. Astrophys. J. Lett., 896(2), L29–9pp.
Abstract: We present the detection of very-high-energy gamma-ray emission above 100 TeV from HAWC J2227+610 with the High-Altitude Water Cherenov Gamma-Ray Observatory (HAWC) observatory. Combining our observations with previously published results by the Very Energetic Radiation Imaging Telescope Array System (VERTIAS), we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.
|
Caron, S., Gomez-Vargas, G. A., Hendriks, L., & Ruiz de Austri, R. (2018). Analyzing gamma rays of the Galactic Center with deep learning. J. Cosmol. Astropart. Phys., 05(5), 058–24pp.
Abstract: We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV gamma rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include gamma rays created by the annihilation of dark matter particles and gamma rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured gamma ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of gamma ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.
|
Doncel, M., Cederwall, B., Martin, S., Quintana, B., Gadea, A., Farnea, E., et al. (2015). Conceptual design of a high resolution Ge array with tracking and imaging capabilities for the DESPEC (FAIR) experiment. J. Instrum., 10, P06010–15pp.
Abstract: We present results of Monte Carlo simulations for the conceptual design of the high-resolution DESPEC Germanium Array Spectrometer (DEGAS) proposed for the Facility for Ion and Antiproton Research (FAIR) under construction at Darmstadt, Germany. The project is carried out in three phases, although only results for the two first phases will be addressed in this work. The first phase will consist of a re-arrangement of the EUROBALL cluster detectors previously used in the RISING campaign at GSI. The second phase is based on coupling AGATA-type triple-cluster detectors with EUROBALL cluster detectors in a compact geometry around the active ion implantation target of DESPEC.
|