|   | 
Details
   web
Records
Author Du, M.L.; Baru, V.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Oller, J.A.; Wang, Q.
Title Revisiting the nature of the P-c pentaquarks Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 157 - 50pp
Keywords QCD Phenomenology; Non-perturbative renormalization
Abstract (up) The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.
Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: du@hiskp.uni-bonn.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000693090600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4958
Permanent link to this record
 

 
Author NEXT Collaboration (Adams, C. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 164 - 24pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract (up) The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 nu beta beta) decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0 nu beta beta decay better than 10(27) years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000694208600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4967
Permanent link to this record
 

 
Author Esposito, R. et al; Domingo-Pardo, C.
Title Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN Type Journal Article
Year 2021 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 24 Issue 9 Pages 093001 - 17pp
Keywords
Abstract (up) The neutron time-of-flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: the Experimental Area 1 (EAR1), located 185 m horizontally from the target, and the Experimental Area 2 (EAR2), located 20 m above the target. The target, based on pure lead, is impacted by a high-intensity 20-GeV/c pulsed proton beam. The facility was conceived to study neutron-nucleus interactions for neutron kinetic energies between a few meV to several GeV, with applications of interest for nuclear astrophysics, nuclear technology, and medical research. After the second-generation target reached the end of its lifetime, the facility underwent a major upgrade during CERN's Long Shutdown 2 (LS2, 2019-2021), which included the installation of the new third-generation neutron target. The first- and second-generation targets were based on water-cooled massive lead blocks and were designed focusing on EAR1, since EAR2 was built later. The new target is cooled by nitrogen gas to avoid erosion-corrosion and contamination of cooling water with radioactive lead spallation products. Moreover, the new design is optimized also for the vertical flight path and EAR2. This paper presents an overview of the target design focused on both physics and thermomechanical performance, and includes a description of the nitrogen cooling circuit and radiation protection studies.
Address [Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Coiffet, T.; Dragoni, F.; Ximenes, R. Franqueira; Giordanino, L.; Grenier, D.; Kershaw, K.; Maire, V.; Moyret, P.; Fontenla, A. Perez; Perillo-Marcone, A.; Pozzi, F.; Sgobba, S.; Timmins, M.; Vlachoudis, V.] European Lab Particle Phys CERN, CH-1211 Geneva 23, Switzerland, Email: raffaele.esposito@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000696029700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4963
Permanent link to this record
 

 
Author Valiente-Dobon, J.J. et al; Gadea, A.; Algora, A.
Title Manifestation of the Berry phase in the atomic nucleus Pb-213 Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 816 Issue Pages 136183 - 5pp
Keywords
Abstract (up) The neutron-rich Pb-213 isotope was produced in the fragmentation of a primary 1 GeV A U-238 beam, separated in FRS in mass and atomic number, and then implanted for isomer decay gamma-ray spectroscopy with the RISING setup at GSI. A newly observed isomer and its measured decay properties indicate that states in Pb-213 are characterized by the seniority quantum number that counts the nucleons not in pairs coupled to angular momentum J = 0. The conservation of seniority is a consequence of a geometric phase associated with particle-hole conjugation, which becomes observable in semi-magic nuclei where nucleons half-fill the valence shell. The gamma-ray spectroscopic observables in Pb-213 are thus found to be driven by two mechanisms, particle-hole conjugation and seniority conservation, which are intertwined through a Berry phase.
Address [Valiente-Dobon, J. J.; Gottardo, A.; de Angelis, G.; Goasduff, A.; Napoli, D. R.; Sahin, E.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: javier.valiente@lnl.infn
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000647421500054 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4820
Permanent link to this record
 

 
Author Al Kharusi, S. et al; Colomer, M.
Title SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy Type Journal Article
Year 2021 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 23 Issue 3 Pages 031201 - 34pp
Keywords supernova neutrinos; multi-messenger astronomy; particle astrophysics
Abstract (up) The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
Address [Al Kharusi, S.; Brunner, T.; Haggard, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada, Email: ahabig@d.umn.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000629947000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4756
Permanent link to this record