LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). First observation of the B+ → Ds+ Ds- K+ decay. Phys. Rev. D, 108(3), 034012–14pp.
Abstract: B+ -> D-s(+) D-s(-) K+ decay is observed for the first time using proton-proton collision data collected by the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb-1. Its branching fraction relative to that of the B+ -> D-s(+) D-s(-) K+ decay is measured to be B(B+ -> D-s(+) D-s(-) K+)/(KB+ -> D-s(+) D-s(-) K+) = 0.525 +/- 0.0333 +/- 0.027 +/- 0.034; where the first uncertainty is statistical, the second s D-s Kthornthorn systematic, and the third is due to the uncertainties on the branching fractions of the D-s(+/-) -> (KK +/-)-K--/+pi(+/-) and D-+/- -> K--/+pi(+/-)pi(+/-) decays. This measurement fills an experimental gap in the knowledge of the family of Cabibbo-favored (b) over bar -> (b) over barc (c) over bar transitions and opens the path for unique studies of spectroscopy in future.
|
Bernabeu, J., Botella, F. J., Nebot, M., & Segarra, A. (2022). B-0 – (B)over-bar(0) entanglement for an ideal experiment for the direct CP violation phi(3)/gamma phase. Phys. Rev. D, 106(5), 054026–7pp.
Abstract: B-0-(B) over bar0 entanglement offers a conceptual alternative to the single charged B-decay asymmetry for the measurement of the direct CP-violating gamma/phi(3) phase. With f = J/Psi(L); J/Psi K-S and g = (pi pi)(0); (rho(L)rho(L))(0), the 16 time-ordered double-decay rate intensities to (f, g) depend on the relative phase between the f- and g-decay amplitudes given by gamma at tree level. Several constraining consistencies appear. An intrinsic accuracy of the method at the level of +/- 1 degrees could be achievable at Belle-II with an improved determination of the penguin amplitude to g channels from existing facilities.
|
BABAR Collaboration(del Amo Sanchez, P. et al), Lopez-March, N., Martinez-Vidal, F., Milanes, D. A., & Oyanguren, A. (2010). Observation of the Y(1(3)D(J)) bottomonium state through decays to pi(+)pi Y-(1S). Phys. Rev. D, 82(11), 111102–7pp.
Abstract: Based on 122 X 10(6)Y(3S) events collected with the BABAR detector, we have observed the Y(1(3)D(J)) bottomonium state through the Y(3S) -> gamma gamma Y(1(3)D(J)) -> gamma gamma pi(+)pi Y-(1S) decay chain. The significance for the J = 2 member of the Y(1(3)D(J)) triplet is 5.8 standard deviations including systematic uncertainties. The mass of the J = 2 state is determined to be 10 164.5 +/- 0.8(stat) +/- 0.5(syst) MeV/c(2). We use the pi(+)pi(-) invariant mass distribution to confirm the consistency of the observed state with the orbital angular momentum assignment of the Y(1(3)D(J)).
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2015). Measurement of the D-0 -> pi(-)e(+)nu(e) differential decay branching fraction as a function of q(2) and study of form factor parametrizations. Phys. Rev. D, 91(5), 052022–25pp.
Abstract: Based on a sample of 500 million e(+)e(-) -> c (c) over bar events recorded by the BABAR detector at c. m. energies of close to 10.6 GeV, we report on a study of the decay D0 ->pi(-)e(+)nu(e). We measure the ratio of branching fractions, R-D = B(D-0 -> pi(-)e(+)nu(e))/beta(D-0 -> K-pi(+)) = 0.0713 +/- 0.0017(stat) +/- 0.0024(syst), and use the present world average for B(D-0 -> K-pi(+)) to obtain B(D-0 -> pi(-)e(+)nu e) = (2.770 +/- 0.068(stat) +/- 0.092(syst) +/- 0.037(ext)) x 10(-3) where the third error accounts for the uncertainty on the branching fraction for the reference channel. The measured dependence of the differential branching fraction on q(2), the four-momentum transfer squared between the D and the pi meson, is compared to various theoretical predictions for the hadronic form factor, f(+,D)(pi)(q(2)), and the normalization vertical bar V-cd vertical bar x f(+,D)(pi)(q(2) = 0) = 0.1374 +/- 0.0038(stat) +/- 0.0022(sys)t +/- 0.0009(ext). is extracted from a fit to data. Using the most recent LQCD prediction of f(+,D)(pi)(q(2) = 0) = 0.666 +/- 0.029, we obtain vertical bar V-cd vertical bar = 0.206 +/- 0.007(exp) +/- 0.009(LQCD). Assuming, instead, vertical bar V-cd vertical bar = vertical bar V-us vertical bar = 0.2252 +/- 0.0009, we obtain f(+,D)(pi)(q(2) = 0) = 0.610 +/- 0.020(exp) +/- 0.005(ext). The q(2) dependence of f(+,D)(pi)(q(2)) is compared to a variety of multipole parametrizations. This information is applied to B-0 -> pi(-)e(+)nu(e) decays and, combined with an earlier B-0 -> pi(-)e(+)nu(e) measurement by BABAR, is used to derive estimates of vertical bar V-ub vertical bar.
|
Garcia-Recio, C., Geng, L. S., Nieves, J., & Salcedo, L. L. (2011). Low-lying even-parity meson resonances and spin-flavor symmetry. Phys. Rev. D, 83(1), 016007–30pp.
Abstract: Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction involving members of the rho nonet and of the pi octet is introduced, and its predictions are analyzed. The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry-breaking terms are then included to account for the physical meson masses and decay constants in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group meson resonances, especially in the J(P) = 0(+) and 1(+) sectors, can be classified according to multiplets of SU(6). The f(0)(1500), f(1)(1420), and some 0(+)(2(++)) resonances cannot be accommodated within this scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I >= 3/2 and/or vertical bar Y vertical bar = 2) with masses in the range of 1.4-1.6 GeV, which would complete the 27(1), 10(3), and 10(3)* multiplets of SU(3) circle times SU(2).
|