|   | 
Details
   web
Records
Author Figueroa, D.G.; Raatikainen, S.; Rasanen, S.; Tomberg, E.
Title Implications of stochastic effects for primordial black hole production in ultra-slow-roll inflation Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 027 - 48pp
Keywords inflation; primordial black holes; dark matter theory; massive black holes
Abstract (down) We study the impact of stochastic noise on the generation of primordial black hole (PBH) seeds in ultra-slow-roll (USR) inflation with numerical simulations. We consider the non-linearity of the system by consistently taking into account the noise dependence on the inflaton perturbations, while evolving the perturbations on the coarse-grained background affected by the noise. We capture in this way the non-Markovian nature of the dynamics, and demonstrate that non-Markovian effects are subleading. Using the Delta N formalism, we find the probability distribution P(R) of the comoving curvature perturbation R. We consider inflationary potentials that fit the CMB and lead to PBH dark matter with i) asteroid, ii) solar, or iii) Planck mass, as well as iv) PBHs that form the seeds of supermassive black holes. We find that stochastic effects enhance the PBH abundance by a factor of O(10)-O(10(8)), depending on the PBH mass. We also show that the usual approximation, where stochastic kicks depend only on the Hubble rate, either underestimates or overestimates the abundance by orders of magnitude, depending on the potential. We evaluate the gauge dependence of the results, discuss the quantum-to-classical transition, and highlight open issues of the application of the stochastic formalism to USR inflation.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueoa@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804493000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5239
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.
Title On the Impact of the LHC Run 2 Data on General Composite Higgs Scenarios Type Journal Article
Year 2022 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2022 Issue Pages 8970837 - 13pp
Keywords
Abstract (down) We study the impact of Run 2 LHC data on general composite Higgs scenarios, where nonlinear effects, mixing with additional scalars, and new fermionic degrees of freedom could simultaneously contribute to the modification of Higgs properties. We obtain new experimental limits on the scale of compositeness, the mixing with singlets and doublets with the Higgs, and the mass and mixing angle of top-partners. We also show that for scenarios where new fermionic degrees of freedom are involved in electroweak symmetry breaking, there is an interesting interplay among Higgs coupling measurements, boosted Higgs properties, SMEFT global analyses, and direct searches for single and double production of vector-like quarks.
Address [Khosa, Charanjit K.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: khosacharanjit@gmail.com;
Corporate Author Thesis
Publisher Hindawi Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000766325700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5153
Permanent link to this record
 

 
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J.
Title How to relax the cosmological neutrino mass bound Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 049 - 18pp
Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS
Abstract (down) We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.
Address [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000466578400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4001
Permanent link to this record
 

 
Author Middeldorf-Wygas, M.M.; Oldengott, I.M.; Bödeker, D.; Schwarz, D.J.
Title Cosmic QCD transition for large lepton flavor asymmetries Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue Pages 123533 - 10pp
Keywords
Abstract (down) We study the impact of large lepton flavor asymmetries on the cosmic QCD transition. Scenarios of unequal lepton flavor asymmetries are observationally almost unconstrained and therefore open up a whole new parameter space for the cosmic QCD transition. We find that for large asymmetries, the formation of a Bose-Einstein condensate of pions can occur and identify the corresponding parameter space. In the vicinity of the QCD transition scale, we express the pressure in terms of a Taylor expansion with respect to the complete set of chemical potentials. The Taylor coefficients rely on input from lattice QCD calculations from the literature. The domain of applicability of this method is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5497
Permanent link to this record
 

 
Author Doring, C.; Centelles Chulia, S.; Lindner, M.; Schaefer, B.M.; Bartelmann, M.
Title Gravitational wave induced baryon acoustic oscillations Type Journal Article
Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 12 Issue 3 Pages 114 - 47pp
Keywords
Abstract (down) We study the impact of gravitational waves originating from a first order phase transition on structure formation. To do so, we perform a second order perturbation analysis in the 1 + 3 covariant framework and derive a wave equation in which second order, adiabatic density perturbations of the photon-baryon fluid are sourced by the gravitational wave energy density during radiation domination and on sub-horizon scales. The scale on which such waves affect the energy density perturbation spectrum is found to be proportional to the horizon size at the time of the phase transition times its inverse duration. Consequently, structure of the size of galaxies and bigger can only be affected in this way by relatively late phase transitions at >= 10(6) s. Using cosmic variance as a bound we derive limits on the strength a and the relative duration (beta/H-*)(-1) of phase transitions as functions of the time of their occurrence which results in a new exclusion region for the energy density in gravitational waves today. We find that the cosmic variance bound forbids only relative long lasting phase transitions, e.g. beta/H-* less than or similar to 6.8 for t(*) approximate to 5 x 10(11 )s, which exhibit a substantial amount of supercooling alpha > 20 to affect the matter power spectrum.
Address [Doering, Christian; Lindner, Manfred] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: cdoering@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000782238100035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5201
Permanent link to this record