toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Albertus, C.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Hyperfine mixing in b -> c semileptonic decay of doubly heavy baryons Type Journal Article
  Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 683 Issue 1 Pages 21-25  
  Keywords  
  Abstract (down) We qualitatively corroborate the results of [W. Roberts, M. Pervin, Int. J. Mod. Phys. A 24 (2009) 2401] according to which hyperfine mixing greatly affects the decay widths of b -> c semileptonic decays involving doubly heavy bc baryons. However, our predictions for the decay widths of the unmixed states differ from those reported in the work of Roberts and Pervin by a factor of 2, and this discrepancy translates to the mixed case. We further show that the predictions of heavy quark spin symmetry, might be used in the future to experimentally extract information on the admixtures in the actual physical bc baryons, in a model independent manner.  
  Address [Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274129600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 501  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV Type Journal Article
  Year 2023 Publication Science Bulletin Abbreviated Journal Sci. Bull.  
  Volume 68 Issue 7 Pages 688-697  
  Keywords Charmonium(-like) states; Hadronic molecules; Heavy quark spin symmetry; Exotic hadrons; Hadron-hadron interactions  
  Abstract (down) We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun; Zou, Bing-Song] Inst Theoret Phys, Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-9273 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000985290600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5520  
Permanent link to this record
 

 
Author Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Light flavor and heavy quark spin symmetry in heavy meson molecules Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 7 Pages 076006 - 14pp  
  Keywords  
  Abstract (down) We propose an effective field theory incorporating light SU(3)-flavor and heavy quark spin symmetry to describe charmed meson-antimeson bound states. At lowest order the effective field theory entails a remarkable simplification: it only involves contact range interactions among the heavy meson and antimeson fields. We show that the isospin violating decays of the X(3872) can be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. As a consequence, we can rule out the existence of an isovector partner of the X(3872). If we additionally assume that the X(3915) and Y(4140) are D*(D) over bar* and D*(s)(D) over bar*(s) molecular states, we can determine the full spectrum of molecular states with isospin I = 0, 1/2 and 1.  
  Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, E-46071 Valencia, Spain, Email: pavonvalderrama@ipno.in2p3.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317197800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1395  
Permanent link to this record
 

 
Author Sobczyk, J.E.; Nieves, J.; Sanchez, F. url  doi
openurl 
  Title Exclusive-final-state hadron observables from neutrino-nucleus multinucleon knockout Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 102 Issue 2 Pages 024601 - 16pp  
  Keywords  
  Abstract (down) We present results of an updated calculation of the two particle two hole (2p2h) contribution to the neutrino-induced charge-current cross section. We provide also some exclusive observables, interesting from the point of view of experimental studies, e.g., distributions of momenta of the outgoing nucleons and of available energy, which we compare with the results obtained within the NEUT generator. We also compute, and separate from the total, the contributions of 3p3h mechanisms. Finally, we discuss the differences between the present results and previous implementations of the model in MC event generators, done at the level of inclusive cross sections, which might significantly influence the experimental analyses, particularly in the cases where the hadronic observables are considered.  
  Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Ctr Mixto CSIC, Apartado 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555591600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4487  
Permanent link to this record
 

 
Author Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Study of the strong Sigma(b) -> Lambda(b)pi and Sigma*(b) -> Lambda(b)pi in a nonrelativistic quark model Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 5 Pages 057902 - 5pp  
  Keywords  
  Abstract (down) We present results for the strong widths corresponding to the Sigma(b) -> Lambda(b)pi and Sigma*(b) -> Lambda(b)pi decays. We apply our model from Phys. Rev. D 72, 094022 (2005), where we previously studied the corresponding transitions in the charmed sector. Our nonrelativistic constituent quark model uses wave functions that take advantage of the constraints imposed by heavy quark symmetry. The partial conservation of axial current hypothesis allows us to determine the strong vertices from an analysis of the axial current matrix elements.  
  Address [Hernandez, E] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295327700002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 776  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva