toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title All-order equation of the effective gluon mass Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 8 Pages 085033 - 21pp  
  Keywords  
  Abstract (up) We present the general derivation of the full nonperturbative equation that governs the momentum evolution of the dynamically generated gluon mass, in the Landau gauge. The entire construction hinges crucially on the inclusion of longitudinally coupled vertices containing massless poles of nonperturbative origin, which preserve the form of the fundamental Slavnov-Taylor identities of the theory. The mass equation is obtained from a previously unexplored version of the Schwinger-Dyson equation for the gluon propagator, particular to the pinch technique-background field method formalism, which involves a reduced number of two-loop dressed diagrams, thus simplifying the calculational task considerably. The two-loop contributions turn out to be of paramount importance, modifying the qualitative features of the full mass equation and enabling the emergence of physically meaningful solutions. Specifically, the resulting homogeneous integral equation is solved numerically, subject to certain approximations, for the entire range of physical momenta, yielding positive-definite and monotonically decreasing gluon masses.  
  Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309999700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1196  
Permanent link to this record
 

 
Author Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S. url  doi
openurl 
  Title On the zero crossing of the three-gluon vertex Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 761 Issue Pages 444-449  
  Keywords Lattice simulations; Three-gluon vertex; Zero crossing; Schwinger-Dyson equations  
  Abstract (up) We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.  
  Address [Athenodorou, A.] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus, Email: binosi@ectstar.eu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384469900063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2939  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative gluon and ghost propagators for d=3 Yang-Mills theory Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 12 Pages 125025 - 13pp  
  Keywords  
  Abstract (up) We study a manifestly gauge-invariant set of Schwinger-Dyson equations to determine the non-perturbative dynamics of the gluon and ghost propagators in d = 3 Yang-Mills theory. The use of the well-known Schwinger mechanism, in the Landau gauge leads to the dynamical generation of a mass for the gauge boson (gluon in d = 3), which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained from the numerical solution of these nonperturbative equations are in very good agreement with the results of SU(2) lattice simulations.  
  Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279165900006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 422  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Gluon mass generation in the presence of dynamical quarks Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 7 Pages 074010 - 12pp  
  Keywords  
  Abstract (up) We study in detail the impact of dynamical quarks on the gluon mass generation mechanism, in the Landau gauge, for the case of a small number of quark families. As in earlier considerations, we assume that the main bulk of the unquenching corrections to the gluon propagator originates from the fully dressed quark-loop diagram. The nonperturbative evaluation of this diagram provides the key relation that expresses the unquenched gluon propagator as a deviation from its quenched counterpart. This relation is subsequently coupled to the integral equation that controls the momentum evolution of the effective gluon mass, which contains a single adjustable parameter; this constitutes a major improvement compared to the analysis presented in Aguilar et al. [Phys. Rev. D 86, 014032 (2012)], where the behavior of the gluon propagator in the deep infrared was estimated through numerical extrapolation. The resulting nonlinear system is then treated numerically, yielding unique solutions for the modified gluon mass and the quenched gluon propagator, which fully confirms the picture put forth recently in several continuum and lattice studies. In particular, an infrared finite gluon propagator emerges, whose saturation point is considerably suppressed, due to a corresponding increase in the value of the gluon mass. This characteristic feature becomes more pronounced as the number of active quark families increases, and can be deduced from the infrared structure of the kernel entering in the gluon mass equation.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326039300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1637  
Permanent link to this record
 

 
Author Binosi, D.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J. url  doi
openurl 
  Title Process-independent strong running coupling Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 5 Pages 054026 - 7pp  
  Keywords  
  Abstract (up) We unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann-Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann-Low effective charge.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, Trentino, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411579700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3317  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva