toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract (up) This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
 

 
Author Della Morte, M.; Hernandez, P. url  doi
openurl 
  Title A non-perturbative study of massive gauge theories Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 213 - 20pp  
  Keywords  
  Abstract (up) We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1765  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B. url  doi
openurl 
  Title The see-saw portal at future Higgs Factories Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 117 - 32pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract (up) We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.  
  Address [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000629645800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4766  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P. url  doi
openurl 
  Title Minimal flavor violation in the see-saw portal Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 185 - 28pp  
  Keywords Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract (up) We consider an extension of the Standard Model with two singlet leptons, with masses in the electroweak range, that induce neutrino masses via the see-saw mechanism, plus a generic new physics sector at a higher scale, A. We apply the minimal flavor violation (MFV) principle to the corresponding Effective Field Theory (nu SMEFT) valid at energy scales E << A. We identify the irreducible sources of lepton flavor and lepton number violation at the renormalizable level, and apply the MFV ansatz to derive the scaling of the Wilson coefficients of the nu SMEFT operators up to dimension six. We highlight the most important phenomenological consequences of this hypothesis in the rates for exotic Higgs decays, the decay length of the heavy neutrinos, and their production modes at present and future colliders. We also comment on possible astrophysical implications.  
  Address [Barducci, Daniele] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000546965800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4462  
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J. url  doi
openurl 
  Title Low-scale seesaw models versus N-eff Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 7 Pages 073009 - 7pp  
  Keywords  
  Abstract (up) We consider the contribution of the extra sterile states in generic low-scale seesaw models to extra radiation, parametrized by N-eff. We find that the value of Neff is roughly independent of the seesaw scale within a wide range. We explore the full parameter space in the case of two extra sterile states and find that these models are strongly constrained by cosmological data for any value of the seesaw scale below O(100 MeV).  
  Address [Hernandez, P.; Kekic, M.] IFIC CSIC UVEG, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334317200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1754  
Permanent link to this record
 

 
Author Sandner, S.; Hernandez, P.; Lopez-Pavon, J.; Rius, N. url  doi
openurl 
  Title Predicting the baryon asymmetry with degenerate right-handed neutrinos Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 153 - 37pp  
  Keywords Baryo-and Leptogenesis; Sterile or Heavy Neutrinos; Early Universe Particle Physics  
  Abstract (up) We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.  
  Address [Sandner, S.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001111979900002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5869  
Permanent link to this record
 

 
Author Vincent, A.C.; Fernandez Martinez, E.; Hernandez, P.; Mena, O.; Lattanzi, M. url  doi
openurl 
  Title Revisiting cosmological bounds on sterile neutrinos Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 006 - 23pp  
  Keywords particle physics – cosmology connection; cosmological neutrinos; cosmology of theories beyond the SM  
  Abstract (up) We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R-CMB and the sound horizon r(s) from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin(2) theta less than or similar to 0.026(m(s)/eV)(-2).  
  Address [Vincent, Aaron C.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England, Email: aaron.vincent@durham.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355742500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2261  
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J. url  doi
openurl 
  Title N_eff in low-scale seesaw models versus the lightest neutrino mass Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 6 Pages 065033 - 12pp  
  Keywords  
  Abstract (up) We evaluate the contribution to N_eff of the extra sterile states in low-scale type I seesaw models (with three extra sterile states). We explore the full parameter space and find that at least two of the heavy states always reach thermalization in the early Universe, while the third one might not thermalize provided the lightest neutrino mass is below O(10(-3) eV). Constraints from cosmology therefore severely restrict the spectra of heavy states in the range 1 eV-100 MeV. The implications for neutrinoless double beta decay are also discussed.  
  Address [Hernandez, P.; Kekic, M.] Univ Valencia, IFIC CSIC, E-46071 Valencia, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344108100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2001  
Permanent link to this record
 

 
Author Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P. url  doi
openurl 
  Title Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 073 - 27pp  
  Keywords Neutrino Physics; CP violation; Standard Model  
  Abstract (up) We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.  
  Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306416500074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1141  
Permanent link to this record
 

 
Author Hernandez, P.; Pena, C.; Romero-Lopez, F. url  doi
openurl 
  Title Large Nc scaling of meson masses and decay constants Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 10 Pages 865 - 13pp  
  Keywords  
  Abstract (up) We perform an ab initio calculation of the Nc scaling of the low-energy couplings of the chiral Lagrangian of low-energy strong interactions, extracted from the mass dependence of meson masses and decay constants. We compute these observables on the lattice with four degenerate fermions, Nf=4, and varying number of colours, Nc=3-6, at a lattice spacing of a similar or equal to 0.075 fm. We find good agreement with the expected Nc scaling and measure the coefficients of the leading and subleading terms in the large Nc expansion. From the subleading Nc corrections, we can also infer the Nf dependence, that we use to extract the value of the low-energy couplings for different values of Nf. We find agreement with previous determinations at Nc=3 and Nf=2,3 and also, our results support a strong paramagnetic suppression of the chiral condensate in moving from Nf=2 to Nf=3.  
  Address [Hernandez, P.; Romero-Lopez, F.] IFIC CSIC UVEG, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: fernando.romero@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000492031700002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4186  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva