Marañon-Gonzalez, F. J., & Navarro-Salas, J. (2023). Adiabatic regularization for spin-1 fields. Phys. Rev. D, 108(12), 125001–11pp.
Abstract: We analyze the adiabatic regularization scheme to renormalize Proca fields in a four-dimensional Friedmann-Lemaitre-Robertson-Walker spacetime. The adiabatic method is well established for scalar and spin-1/2 fields, but is not yet fully understood for spin-1 fields. We give the details of the construction and show that, in the massless limit, the renormalized stress-energy tensor of the Proca field is closely related to that of a minimally coupled scalar field. Our result is in full agreement with other approaches, based on the effective action, which also show a discontinuity in the massless limit. The scalar field can be naturally regarded as a Stueckelberg-type field. We also test the consistency of our results in de Sitter space.
|
Ferreiro, A., Navarro-Salas, J., & Pla, S. (2018). Role of gravity in the pair creation induced by electric fields. Phys. Rev. D, 98(4), 045015–6pp.
Abstract: We analyze the pair production induced by homogenous, time-dependent electric fields in an expanding space-time background. We point out that, in obtaining the semiclassical Maxwell equations, two distinct notions of adiabatic renormalization are possible. In Minkowski space, the two recipes turn out to be equivalent. However, in the presence of gravity, only the recipe requiring an adiabatic hierarchy between the gravitational and the gauge field is consistent with the conservation of the energy-momentum tensor.
|
del Rio, A., Marañon-Gonzalez, F. J., & Navarro-Salas, J. (2025). Singularity resolution in spherically reduced 2D semiclassical gravity with negative central charge. Phys. Rev. D, 111(4), 045025–11pp.
Abstract: We analyze the semiclassical Schwarzschild geometry in the Boulware quantum state in the framework of two-dimensional (2D) dilaton gravity. The classical model is defined by the spherical reduction of Einstein's gravity sourced with conformal scalar fields. The expectation value of the stress-energy tensor in the Boulware state is singular at the classical horizon of the Schwarzschild spacetime, but when backreaction effects are considered, previous results have shown that the 2D geometry is horizonless and described by a nonsymmetric wormhole with a curvature singularity on the other side of the throat. In this work we show that reversing the sign of the central charge of the conformal matter removes the curvature singularity of the 2D backreacted geometry, which happens to be horizonless and asymptotically flat. This result is consistent with a similar analysis recently performed for the Callan-Giddings-Harvey-Strominger model. We also argue the physical significance of negative central charges in conformal anomalies from a four-dimensional perspective.
|
Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2011). Remarks on the renormalization of primordial cosmological perturbations. Phys. Rev. D, 84(10), 107304–5pp.
Abstract: We briefly review the need to perform renormalization of inflationary perturbations to properly work out the physical power spectra. We also summarize the basis of (momentum-space) renormalization in curved spacetime and address several misconceptions found in recent literature on this subject.
|
Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2010). Reply to "Comment on 'Insensitivity of Hawking radiation to an invariant Planck-scale cutoff' ''. Phys. Rev. D, 81(10), 108502–3pp.
Abstract: We clarify the relationship between the conclusions of the previous Comment of A. Helfer [A. Helfer, preceding Comment, Phys. Rev. D 81, 108501 (2010)] and that of our Brief Report [I. Agullo, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. D 80, 047503 (2009).].
|