|   | 
Details
   web
Records
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 256 Issue Pages 107477 - 15pp
Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE
Abstract (up) The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000564482200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4520
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Nanobeacon: A time calibration device for the KM3NeT neutrino telescope Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1040 Issue Pages 167132 - 13pp
Keywords Time calibration; Instrumentation; Neutrino telescopes
Abstract (up) The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. A relative time synchronisation between photomultipliers of the nanosecond order needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 & nbsp;Nanobeacons have been already produced. The characterisation of the optical pulse and the wavelength emission profile of the devices is critical for the time calibration. The optical pulse rise time has been quantified as less than 3 ns, while the Full Width Half Maximum is less than 6 ns. The wavelength drift, due to a variation of the supply voltage, has also been qualified as lower than 10 nm for the full range of the Nanobeacon. In this paper, more details about the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sagreus@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000841467100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5342
Permanent link to this record
 

 
Author LAGUNA-LBNO Collaboration (Agarwalla, S.K., et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Sorel, M.
Title The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 094 - 38pp
Keywords Oscillation; Neutrino Detectors and Telescopes; CP violation
Abstract (up) The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from delta(CP) and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5 sigma C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has similar to 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract delta(CP) from the data, the first LBNO phase can convincingly give evidence for CPV on the 3 sigma C.L. using today's knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.
Address [Banerjee, D.; Bay, F.; Cantini, C.; Crivelli, P.; Di Luise, S.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Nguyen, K.; Nikolics, K.; Periale, L.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Sgalaberna, D.; Viant, T.; Wu, S.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland, Email: andre.rubbia@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000337086700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1821
Permanent link to this record
 

 
Author Hernandez-Rey, J.J.; Ardid, M.; Bou Cabo, M.; Calvo, D.; Diaz, A.F.; Gozzini, S.R.; Martinez-Mora, J.A.; Navas, S.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Science with Neutrino Telescopes in Spain Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 89 - 25pp
Keywords neutrino; neutrino telescopes; neutrino astrophysics; neutrino properties; sea science
Abstract (up) The primary scientific goal of neutrino telescopes is the detection and study of cosmic neutrino signals. However, the range of physics topics that these instruments can tackle is exceedingly wide and diverse. Neutrinos coming from outside the Earth, in association with other messengers, can contribute to clarify the question of the mechanisms that power the astrophysical accelerators which are known to exist from the observation of high-energy cosmic and gamma rays. Cosmic neutrinos can also be used to bring relevant information about the nature of dark matter, to study the intrinsic properties of neutrinos and to look for physics beyond the Standard Model. Likewise, atmospheric neutrinos can be used to study an ample variety of particle physics issues, such as neutrino oscillation phenomena, the determination of the neutrino mass ordering, non-standard neutrino interactions, neutrino decays and a diversity of other physics topics. In this article, we review a selected number of these topics, chosen on the basis of their scientific relevance and the involvement in their study of the Spanish physics community working in the KM3NeT and ANTARES neutrino telescopes.
Address [Hernandez-Rey, Juan Jose; Calvo, David; Gozzini, Sara Rebecca; Real, Diego; Greus, Francisco Salesa; Losa, Agustin Sanchez; Zornoza, Juan de Dios; Zuniga, Juan] Univ Valencia, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: juan.j.hernandez@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762321400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5145
Permanent link to this record
 

 
Author Zornoza, J.D.
Title Review on Indirect Dark Matter Searches with Neutrino Telescopes Type Journal Article
Year 2021 Publication Universe Abbreviated Journal Universe
Volume 7 Issue 11 Pages 415 - 10pp
Keywords dark matter; neutrino telescopes; IceCube; ANTARES; KM3NeT; SuperK
Abstract (up) The search for dark matter is one of the hottest topics in Physics today. The fact that about 80% of the matter of the Universe is of unknown nature has triggered an intense experimental activity to detect this kind of matter and a no less intense effort on the theory side to explain it. Given the fact that we do not know the properties of dark matter well, searches from different fronts are mandatory. Neutrino telescopes are part of this experimental quest and offer specific advantages. Among the targets to look for dark matter, the Sun and the Galactic Center are the most promising ones. Considering models of dark matter densities in the Sun, neutrino telescopes have put the best limits on spin-dependent cross section of proton-WIMP scattering. Moreover, they are competitive in the constraints on the thermally averaged annihilation cross-section for high WIMP masses when looking at the Galactic Centre. Other results are also reviewed.
Address [de Dios Zornoza, Juan] IFIC Inst Fis Corpuscular UV CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: zornoza@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000723346500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5044
Permanent link to this record