|   | 
Details
   web
Records
Author Esperante-Pereira, D.
Title DEPFET active pixel sensors for the vertex detector of the Belle-II experiment Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages C03004 - 11pp
Keywords Particle tracking detectors; Solid state detectors; Particle tracking detectors (Solid-state detectors)
Abstract (up) Active pixels sensors based on the DEPFET technology will be used for the innermost vertex detector of the future Belle-II experiment. The increased luminosity of the e(+) e(-) SuperKEKB collider entails challenging detector requirements, namely: low material budget, low power consumption, high precision and efficiency, and a large readout rate. The DEPFET active pixel technology has shown to be a suitable solution for this purpose. A review of the different aspects of the detector design (sensors, readout ASICS and supplementary infrastructure) and the results of the latest thinned sensor prototypes (50 μm) are described.
Address Univ Valencia, CSIC, IFIC Inst Fis Corpuscular, Valencia 46980, Spain, Email: daniel.esperante@csic.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000336123200004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1803
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title Probing decaying heavy dark matter with the 4-year IceCube HESE data Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 027 - 36pp
Keywords dark matter theory; neutrino astronomy; neutrino detectors; ultra high energy photons and neutrinos
Abstract (up) After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20TeV and 2PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000406420500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3243
Permanent link to this record
 

 
Author Blanco, C.; Escudero, M.; Hooper, D.; Witte, S.J.
Title Z ' mediated WIMPs: dead, dying, or soon to be detected? Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 024 - 48pp
Keywords dark matter theory; dark matter detectors; dark matter experiments
Abstract (up) Although weakly interacting massive particles (WIMPs) have long been among the most studied and theoretically attractive classes of candidates for the dark matter of our universe, the lack of their detection in direct detection and collider experiments has begun to dampen enthusiasm for this paradigm. In this study, we set out to appraise the status of the WIMP paradigm, focusing on the case of dark matter candidates that interact with the Standard Model through a new gauge boson. After considering a wide range of Z' mediated dark matter models, we quantitatively evaluate the fraction of the parameter space that has been excluded by existing experiments, and that is projected to fall within the reach of future direct detection experiments. Despite the existence of stringent constraints, we find that a sizable fraction of this parameter space remains viable. More specifically, if the dark matter is a Majorana fermion, we find that an order one fraction of the parameter space is in many cases untested by current experiments. Future direct detection experiments with sensitivity near the irreducible neutrino floor will be able to test a significant fraction of the currently viable parameter space, providing considerable motivation for the next generation of direct detection experiments.
Address [Blanco, Carlos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA, Email: carlosblanco2718@uchicago.ed;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000507259700021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4255
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title B flavour tagging using charm decays at the LHCb experiment Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P10005 - 16pp
Keywords Performance of High Energy Physics Detectors; Analysis and statistical methods
Abstract (up) An algorithm is described for tagging the flavour content at production of neutral B mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a B meson with the charge of a reconstructed secondary charm hadron from the decay of the other b hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+ -> J/psi K+ and B-0 -> J/psi K*(0) using 3.0fb(-1) of data collected by the LHCb experiment at pp centre-of-mass energies of 7TeV and 8TeV. Its tagging power on these samples of B -> J/psi X decays is (0.30 +/- 0.01 +/- 0.01) %.
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Osorio Rodrigues, B.; dos Reis, A. C.; Rodrigues, A. B.] CBPF, Rio De Janeiro, Brazil, Email: jwimberl@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000367674700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2519
Permanent link to this record
 

 
Author Bernal, N.; Martin-Albo, J.; Palomares-Ruiz, S.
Title A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 011 - 19pp
Keywords dark matter theory; neutrino detectors; neutrino experiments
Abstract (up) Annihilation of dark matter particles accumulated in the Sun would produce a flux of high-energy neutrinos whose prospects of detection in neutrino telescopes and detectors have been extensively discussed in the literature. However, for annihilations into Standard Model particles, there would also be a flux of neutrinos in the MeV range from the decays at rest of muons and positively charged pions. These low-energy neutrinos have never been considered before and they open the possibility to also constrain dark matter annihilation in the Sun into e(+)e(-), mu(+)mu(-) or light quarks. Here we perform a detailed analysis using the recent Super-Kamiokande data in the few tens of MeV range to set limits on the WIMP-nucleon scattering cross section for different annihilation channels and computing the evaporation rate of WIMPs from the Sun for all values of the scattering cross section in a consistent way.
Address [Bernal, Nicolas] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany, Email: nicolas@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000324032800014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1584
Permanent link to this record