|   | 
Details
   web
Records
Author Aguilar-Saavedra, J.A.; Deppisch, F.; Kittel, O.; Valle, J.W.F.
Title Flavor in heavy neutrino searches at the LHC Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 9 Pages 091301 - 4pp
Keywords
Abstract (up) Heavy neutrinos at the TeV scale have been searched for at the LHC in the context of left-right models, under the assumption that they couple to the electron, the muon, or both. We show that current searches are also sensitive to heavy neutrinos coupling predominantly to the tau lepton, and present limits can significantly constrain the parameter space of general flavor mixing.
Address [Aguilar-Saavedra, J. A.; Kittel, O.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: jaas@ugr.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000304400400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1045
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Realistic SU(3)(c) x SU(3)(L) x U(1)(X) model with a type II Dirac neutrino seesaw mechanism Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 3 Pages 033012 - 4pp
Keywords
Abstract (up) Here we propose a realistic SU(3)(c) circle times SU(3)(L) circle times U(1)(X) electroweak gauge model with enlarged Higgs sector. The scheme allows for the natural implementation of a type II seesaw mechanism for Dirac neutrinos, while charged lepton and quark masses are reproduced in a natural way thanks to the presence of new scalars. The new SU(3)(c) circle times SU(3)(L) circle times U(1)(X) energy scale characterizing neutrino mass generation could be accessible to the current LHC experiments.
Address [Reig, Mario; Valle, Jose W. F.; Vaquera-Araujo, C. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mareiglo@alumni.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000383046500003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2892
Permanent link to this record
 

 
Author Pasquini, P.; Centelles Chulia, S.; Valle, J.W.F.
Title Neutrino oscillations from warped flavor symmetry: Predictions for long baseline experiments T2K, NOvA, and DUNE Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 9 Pages 095030 - 8pp
Keywords
Abstract (up) Here we study the pattern of neutrino oscillations emerging from a previously proposed warped standard model construction incorporating Delta(27) flavor symmetry [J. High Energy Phys. 01 (2016) 007]. In addition to a complete description of fermion masses, the model predicts the lepton mixing matrix in terms of two parameters. The good measurement of. theta(13) makes these two parameters tightly correlated, leading to an approximate one-parameter description of neutrino oscillations. We find secondary minima for the CP phase absent in the general unconstrained oscillation scenario and determine the fourfold degenerate sharp correlation between the physical CP phase delta(CP) and the atmospheric mixing angle. theta(23). This implies that maximal. theta(23) correlates with maximal leptonic CP violation. We perform a realistic estimate of the total neutrino and antineutrino event numbers expected at long baseline oscillation experiments T2K, NOvA, and the upcoming DUNE proposal. We show how an improved knowledge of the CP phase will probe the model in a significant way.
Address [Pasquini, Pedro] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: pasquini@ifi.unicamp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000402471800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3155
Permanent link to this record
 

 
Author Forero, D.V.; Tortola, M.; Valle, J.W.F.
Title Global status of neutrino oscillation parameters after Neutrino-2012 Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 7 Pages 073012 - 8pp
Keywords
Abstract (up) Here we update the global fit of neutrino oscillations in Refs. [T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 063004 (2011); T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 109401 (2011)] including the recent measurements of reactor antineutrino disappearance reported by the Double Chooz, Daya Bay, and RENO experiments, together with latest MINOS and T2K appearance and disappearance results, as presented at the Neutrino-2012 conference. We find that the preferred global fit value of theta(13) is quite large: sin(2)theta(13) similar or equal to 0.025 for normal and inverted neutrino mass ordering, with theta(13) = 0 now excluded at more than 10 sigma. The impact of the new theta(13) measurements over the other neutrino oscillation parameters is discussed as well as the role of the new long-baseline neutrino data and the atmospheric neutrino analysis in the determination of a non-maximal atmospheric angle theta(23).
Address [Forero, D. V.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000309999100003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1193
Permanent link to this record
 

 
Author Forero, D.V.; Tortola, M.; Valle, J.W.F.
Title Neutrino oscillations refitted Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 9 Pages 093006 - 10pp
Keywords
Abstract (up) Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle theta(23) is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the CP phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.
Address [Forero, D. V.; Tortola, M.; Valle, J. W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, E-46980 Valencia, Spain, Email: dvanegas@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000345534800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2014
Permanent link to this record