|   | 
Details
   web
Records
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal
Volume 84 Issue 12 Pages 122005
Keywords
Abstract (down) The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E(-2) differential energy spectrum the limit on the single-flavor neutrino is E(2)dN/dE < 1.74 x 10(-7)GeVcm(-2)s(-1)sr(-1) at 90% C.L. in the energy range 1 x 10(17) eV < E < 1 x 10(20)eV.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000298667100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 863
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 1 Pages 012012 - 15pp
Keywords
Abstract (down) The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 degrees and different energies of the primary particle. From these distributions, we define X-max(mu) as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X-max(mu) as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.
Address [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000339922100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1866
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title Trigger and aperture of the surface detector array of the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 613 Issue 1 Pages 29-39
Keywords Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; Exposure
Abstract (down) The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.
Address [Boncioli, D.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy, Email: giorgio.matthiae@roma2.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000274772800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 499
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Search for Point-like Sources of Ultra-high Energy Neutrinos at the Pierre Auger Observatory and Improved Limit on the Diffuse Flux of Tau Neutrinos Type Journal Article
Year 2012 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 755 Issue 1 Pages L4 - 7pp
Keywords astroparticle physics; cosmic rays; neutrinos; telescopes
Abstract (down) The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E-nu between 10(17) eV and 10(20) eV from point-like sources across the sky south of +55 degrees and north of -65 degrees declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of similar to 3.5 years of a full surface detector array for the Earth-skimming channel and similar to 2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k(PS) . E-nu(-2). from a point-like source, 90% confidence level upper limits for k(PS) at the level of approximate to 5x10(-7) and 2.5x10(-6) GeV cm(-2) s(-1) have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000306930700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1121
Permanent link to this record
 

 
Author Mertsch, P.; Parimbelli, G.; de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S.
Title Neutrino clustering in the Milky Way and beyond Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 015 - 23pp
Keywords cosmological neutrinos; galaxy clustering; cosmological simulations
Abstract (down) The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmological relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution of matter in the Milky Way and neglected the influence of other nearby objects like the Virgo cluster, although recent N-body simulations suggest that the latter may actually be important. In this paper, we adopt a back-tracking technique, well established in the calculation of cosmic rays fluxes, to perform the first three-dimensional calculation of the number density of relic neutrinos at the Solar System, taking into account not only the matter composition of the Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV.
Address [Mertsch, P.; Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany, Email: pmertsch@physik.rwth-aachen.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000528025800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4382
Permanent link to this record