|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Carretero, V.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Measurement of the atmospheric nu(e) and nu(mu) energy spectra with the ANTARES neutrino telescope Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 816 Issue Pages 136228 - 7pp
Keywords Neutrino telescope; Atmospheric neutrinos; ANTARES
Abstract (up) This letter presents a combined measurement of the energy spectra of atmospheric nu(e) and nu(mu) in the energy range between similar to 100 GeV and similar to 50 TeV with the ANTARES neutrino telescope. The analysis uses 3012 days of detector livetime in the period 2007-2017, and selects 1016 neutrinos interacting in (or close to) the instrumented volume of the detector, yielding shower-like events (mainly from nu(e) + (nu) over bar (e) charged current plus all neutrino neutral current interactions) and starting track events (mainly from nu(mu) + (nu) over bar (mu) charged current interactions). The contamination by atmospheric muons in the final sample is suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 100 GeV, are limited to experiments in polar ice and, for nu(mu), to Super-Kamiokande.
Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: spurio@bo.infn.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000647421500082 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4818
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Search for magnetic monopoles with ten years of the ANTARES neutrino telescope Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume 34 Issue Pages 1-8
Keywords ANTARES telescope; Magnetic monopoles; Neutrino
Abstract (up) This work presents a new search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). Compared to previous ANTARES searches, this analysis uses a run-by-run simulation strategy, with a larger exposure as well as a new simulation of magnetic monopoles taking into account the Kasama, Yang and Goldhaber model for their interaction cross-section with matter. No signal compatible with the passage of relativistic magnetic monopoles is observed, and upper limits on the flux of magnetic monopoles with beta = v/c & nbsp;>=& nbsp;0.55, are presented. For ultra-relativistic magnetic monopoles the flux limit is similar to 7 x 10(-18) cm(-2) s(-1) sr(-1). (C)& nbsp;2022 Elsevier B.V. All rights reserved.
Address [Albert, A.; Pradier, T.] Univ Strasbourg, CNRS, UMR 7178, F-67000 Strasbourg, France, Email: boumaaza.jihad@gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000791701000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5223
Permanent link to this record
 

 
Author AMON and ANTARES Collaborations (Ayala Solares, H.A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data Type Journal Article
Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 886 Issue 2 Pages 98 - 8pp
Keywords BL Lacertae objects: general; cosmic rays; gamma-ray burst: general; gamma rays: general; neutrinos
Abstract (up) We analyze 7.3 yr of ANTARES high-energy neutrino and Fermi Large Area Telescope (LAT) gamma-ray data in search of cosmic neutrino + gamma-ray (nu + gamma) transient sources or source populations. Our analysis has the potential to detect either individual nu + gamma transient sources (durations delta t less than or similar to 1000 s), if they exhibit sufficient gamma-ray or neutrino multiplicity, or a statistical excess of nu + gamma transients of individually lower multiplicities. Individual high gamma-ray multiplicity events could be produced, for example, by a single ANTARES neutrino in coincidence with a LAT-detected gamma-ray burst. Treating ANTARES track and cascade event types separately, we establish detection thresholds by Monte Carlo scrambling of the neutrino data, and determine our analysis sensitivity by signal injection against these scrambled data sets. We find our analysis is sensitive to nu + gamma transient populations responsible for >5% of the observed gamma-coincident neutrinos in the track data at 90% confidence. Applying our analysis to the unscrambled data reveals no individual nu + gamma events of high significance; two ANTARES track + Fermi gamma-ray events are identified that exceed a once per decade false alarm rate threshold (p = 17%). No evidence for subthreshold nu + gamma source populations is found among the track (p = 39%) or cascade (p = 60%) events. Exploring a possible correlation of high-energy neutrino directions with Fermi gamma-ray sky brightness identified in previous work yields no added support for this correlation. While TXS.0506+056, a blazar and variable (nontransient) Fermi gamma-ray source, has recently been identified as the first source of high-energy neutrinos, the challenges in reconciling observations of the Fermi gamma-ray sky, the IceCube high-energy cosmic neutrinos, and ultrahigh-energy cosmic rays using only blazars suggest a significant contribution by other source populations. Searches for transient sources of high-energy neutrinos thus remain interesting, with the potential for either neutrino clustering or multimessenger coincidence searches to lead to discovery of the first nu + gamma transients.
Address [Solares, H. A. Ayala; Cowen, D. F.; DeLaunay, J. J.; Keivani, A.; Mostafa, M.; Murase, K.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: cft114@psu.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000503245500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4227
Permanent link to this record
 

 
Author ANTARES Collaboration (Reeb, N. et al); Alves, S.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Studying bioluminescence flashes with the ANTARES deep-sea neutrino telescope Type Journal Article
Year 2023 Publication Limnology and Oceanography-Methods Abbreviated Journal Limnol. Oceanogr. Meth.
Volume 21 Issue 11 Pages 734-760
Keywords
Abstract (up) We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data.
Address [Reeb, Nico; Hutschenreuter, Sebastian; Zehetner, Philipp; Ensslin, Torsten] Max Planck Inst Astrophys, Informat Field Theory Grp, Garching, Germany, Email: nreeb@mpa-garching.mpg.de
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1541-5856 ISBN Medium
Area Expedition Conference
Notes WOS:001085083500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5787
Permanent link to this record
 

 
Author ANTARES and IceCube Collaborations (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 8 Pages 082002 - 13pp
Keywords
Abstract (up) We present the results of the first combined dark matter search targeting the Galactic Center using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the tau(+)tau(-) , mu(+)mu(-) , b (b) over bar, and W+W- channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2101.6 days of ANTARES data and 1007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally averaged dark matter annihilation cross section <sigma(A)upsilon > are set. These limits present an improvement of up to a factor of 2 in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the tau(+)tau(-)channel, the value obtained for the limit is 7.44 x 10(-24) cm(3) s(-1 )for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.
Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000582565500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4581
Permanent link to this record