Olleros, P., Caballero, L., Domingo-Pardo, C., Babiano, V., Ladarescu, I., Calvo, D., et al. (2018). On the performance of large monolithic LaCl3(Ce) crystals coupled to pixelated silicon photosensors. J. Instrum., 13, P03014–17pp.
Abstract: We investigate the performance of large area radiation detectors, with high energy-and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50 x 50 mm(2)) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8 x 8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm(2)), with a pixel size of 6 x 6 mm(2), we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thick-nesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3 x 3 mm(2).
|
Doncel, M., Cederwall, B., Martin, S., Quintana, B., Gadea, A., Farnea, E., et al. (2015). Conceptual design of a high resolution Ge array with tracking and imaging capabilities for the DESPEC (FAIR) experiment. J. Instrum., 10, P06010–15pp.
Abstract: We present results of Monte Carlo simulations for the conceptual design of the high-resolution DESPEC Germanium Array Spectrometer (DEGAS) proposed for the Facility for Ion and Antiproton Research (FAIR) under construction at Darmstadt, Germany. The project is carried out in three phases, although only results for the two first phases will be addressed in this work. The first phase will consist of a re-arrangement of the EUROBALL cluster detectors previously used in the RISING campaign at GSI. The second phase is based on coupling AGATA-type triple-cluster detectors with EUROBALL cluster detectors in a compact geometry around the active ion implantation target of DESPEC.
|
NEXT Collaboration, Carcel, S., Carrion, J. V., Felkai, R., Kekic, M., Lopez-March, N., et al. (2020). Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture. J. Phys. G, 47(7), 075001–17pp.
Abstract: Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
|