|   | 
Details
   web
Records
Author Utrilla Gines, E.; Mena, O.; Witte, S.J.
Title Revisiting constraints on WIMPs around primordial black holes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 6 Pages 063538 - 14pp
Keywords
Abstract (down) While primordial black holes (PBHs) with masses MPBH greater than or similar to 10-11 Mo cannot comprise the entirety of dark matter, the existence of even a small population of these objects can have profound astrophysical consequences. A subdominant population of PBHs will efficiently accrete dark matter particles before matter-radiation equality, giving rise to high-density dark matter spikes. We consider here the scenario in which dark matter is comprised primarily of weakly interacting massive particles (WIMPs) with a small subdominant contribution coming from PBHs, and revisit the constraints on the annihilation of WIMPs in these spikes using observations of the isotropic gamma-ray background (IGRB) and the cosmic microwave background (CMB), for a range of WIMP masses, annihilation channels, cross sections, and PBH mass functions. We find that the constraints derived using the IGRB have been significantly overestimated (in some cases by many orders of magnitude), and that limits obtained using observations of the CMB are typically stronger than, or comparable to, those coming from the IGRB. Importantly, we show that similar to OoMo thorn PBHs can still contribute significantly to the dark matter density for sufficiently low WIMP masses and p-wave annihilation cross sections.
Address [Utrilla Gines, Estanis; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000866519600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5390
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
Year 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 19 Issue Pages 093005 - 14pp
Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions
Abstract (down) When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.
Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000410457100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3292
Permanent link to this record
 

 
Author Wilson, J.N. et al; Algora, A.
Title Angular momentum generation in nuclear fission Type Journal Article
Year 2021 Publication Nature Abbreviated Journal Nature
Volume 590 Issue 7847 Pages 566-570
Keywords
Abstract (down) When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.
Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000621583600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4717
Permanent link to this record
 

 
Author Yao, D.L.; Alvarez-Ruso, L.; Hiller Blin, A.N.; Vicente Vacas, M.J.
Title Weak pion production off the nucleon in covariant chiral perturbation theory Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 7 Pages 076004 - 25pp
Keywords
Abstract (down) Weak pion production off the nucleon at low energies has been systematically investigated in manifestly relativistic baryon chiral perturbation theory with explicit inclusion of the Delta(1232) resonance. Most of the involved low-energy constants have been previously determined in other processes such as pion-nucleon elastic scattering and electromagnetic pion production off the nucleon. For numerical estimates, the few remaining constants are set to be of natural size. As a result, the total cross sections for single pion production on neutrons and protons, induced either by neutrino or antineutrino, are predicted. Our results are consistent with the scarce existing experimental data except in the nu(mu)n -> mu(-)n pi(+) channel, where higher-order contributions might still be significant. The Delta resonance mechanisms lead to sizeable contributions in all channels, especially in nu(mu)p -> mu(-) p pi(+), even though the considered energies are close to the production threshold. The present study provides a well-founded low-energy benchmark for phenomenological models aimed at the description of weak pion production processes in the broad kinematic range of interest for current and future neutrino-oscillation experiments.
Address [Yao, De-Liang; Alvarez-Ruso, Luis; Vicente Vacas, M. J.] UV, CSIC, Dept Fis Teor, Ctr Mixto,Inst Invest Paterna, E-46071 Valencia, Spain, Email: Deliang.Yao@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000446557200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3752
Permanent link to this record
 

 
Author Aguilar-Saavedra, J.A.; Boudreau, J.; Escobar, C.; Mueller, J.
Title The fully differential top decay distribution Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 3 Pages 200 - 8pp
Keywords
Abstract (down) We write down the four-dimensional fully differential decay distribution for the top quark decay t -> Wb -> l nu b. We discuss how its eight physical parameters can be measured, either with a global fit or with the use of selected one-dimensional distributions and asymmetries. We give expressions for the top decay amplitudes for a general tbW interaction, and show how the untangled measurement of the two components of the fraction of longitudinal W bosons – those with b quark helicities of 1/2 and -1/2, respectively – could improve the precision of a global fit to the tbW vertex.
Address [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: jaas@ugr.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000400019500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3075
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Junction conditions in Palatini f(R) gravity Type Journal Article
Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 37 Issue 21 Pages 215002 - 11pp
Keywords f(R) gravity; junction conditions; Palatini approach; stellar structure
Abstract (down) We work out the junction conditions for f(R) gravity formulated in metric-affine (Palatini) spaces using a tensor distributional approach. These conditions are needed for building consistent models of gravitating bodies with an interior and exterior regions matched at some hypersurface. Some of these conditions depart from the standard Darmois-Israel ones of general relativity and from their metric f(R) counterparts. In particular, we find that the trace of the stress-energy momentum tensor in the bulk must be continuous across the matching hypersurface, though its normal derivative need not to. We illustrate the relevance of these conditions by considering the properties of stellar surfaces in polytropic models, showing that the range of equations of state with potentially pathological effects is shifted beyond the domain of physical interest. This confirms, in particular, that neutron stars and white dwarfs can be safely modelled within the Palatini f(R) framework.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000575326000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4555
Permanent link to this record
 

 
Author Babak, S.; Caprini, C.; Figueroa, D.G.; Karnesis, N.; Marcoccia, P.; Nardini, G.; Pieroni, M.; Ricciardone, A.; Sesana, A.; Torrado, J.
Title Stochastic gravitational wave background from stellar origin binary black holes in LISA Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 034 - 37pp
Keywords
Abstract (down) We use the latest constraints on the population of stellar origin binary black holes (SOBBH) from LIGO/Virgo/KAGRA (LVK) observations, to estimate the stochastic gravitational wave background (SGWB) they generate in the frequency band of LISA. In order to account for the faint and distant binaries, which contribute the most to the SGWB, we extend the merger rate at high redshift assuming that it tracks the star formation rate. We adopt different methods to compute the SGWB signal: we perform an analytical evaluation, we use Monte Carlo sums over the SOBBH population realisations, and we account for the role of the detector by simulating LISA data and iteratively removing the resolvable signals until only the confusion noise is left. The last method allows the extraction of both the expected SGWB and the number of resolvable SOBBHs. Since the latter are few for signal-to-noise ratio thresholds larger than five, we confirm that the spectral shape of the SGWB in the LISA band agrees with the analytical prediction of a single power law. We infer the probability distribution of the SGWB amplitude from the LVK GWTC-3 posterior of the binary population model: at the reference frequency of 0.003 Hz it has an interquartile range of h2ΩGW(f = 3 × 10-3 Hz) ∈ [5.65, 11.5] × 10-13, in agreement with most previous estimates. We then perform a MC analysis to assess LISA's capability to detect and characterise this signal. Accounting for both the instrumental noise and the galactic binaries foreground, with four years of data, LISA will be able to detect the SOBBH SGWB with percent accuracy, narrowing down the uncertainty on the amplitude by one order of magnitude with respect to the range of possible amplitudes inferred from the population model. A measurement of this signal by LISA will help to break the degeneracy among some of the population parameters, and provide interesting constraints, in particular on the redshift evolution of the SOBBH merger rate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6081
Permanent link to this record
 

 
Author Bagnaschi, E.; Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T.
Title SMEFT analysis of m(W) Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 308 - 22pp
Keywords Electroweak Precision Physics; SMEFT
Abstract (down) We use the Fitmaker tool to incorporate the recent CDF measurement of mW in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O-HWB, O-HD, O (l) (l) or O ((3)) (H l) with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O-HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z 0 vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.
Address [Bagnaschi, Emanuele; Ellis, John; You, Tevong] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: emanuele.bagnaschi@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000848742400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5349
Permanent link to this record
 

 
Author Dai, L.R.; Oset, E.
Title Helicity amplitudes in B -> D*(nu)over-barl decay Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 11 Pages 951 - 11pp
Keywords
Abstract (down) We use a recent formalism of the weak hadronic reactions that maps the transition matrix elements at the quark level into hadronic matrix elements, evaluated with an elaborate angular momentum algebra that allows finally to write the weak matrix elements in terms of easy analytical formulas. In particular they appear explicitly for the different spin third components of the vector mesons involved. We extend the formalism to a general case, with the operator parameter, which suggest to use this magnitude to test different models beyond the standard model. We show that our formalism implies the heavy quark limit and compare our results with calculations that include higher order corrections in heavy quark effective theory. We find very similar results for both approaches in normalized distributions, which are practically identical at the end point of M-inv((nu l)) = m(B) – m(D)*
Address [Dai, L. R.] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: dailr@lnnu.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000451192100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3818
Permanent link to this record
 

 
Author Du, M.L.; Hernandez, E.; Nieves, J.
Title Is the Lambda(c)(2625)(+) the heavy quark spin symmetry partner of the Lambda(c)(2595)(+) ? Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 11 Pages 114020 - 22pp
Keywords
Abstract (down) We use a O(alpha(s). Lambda(QCD)/m(c)) heavy quark effective theory scheme, where only O(Lambda(QCD)/mb) corrections are neglected, to study the matrix elements of the scalar, pseudoscalar, vector, axial-vector and tensor currents between the Lambda(b) ground state and the odd parity charm Lambda(c)(2595)(+) and Lambda(c)(2625)(+) resonances. We show that in the near-zero recoil regime, the scheme describes reasonably well, taking into account uncertainties, the results for the 24 form factors obtained in lattice QCD (LQCD) just in terms of only four Isgur-Wise (IW) functions. We also find some support for the possibility that the Lambda(c)(2595)(+) and Lambda(c)(2625)(+) resonances might form a heavy quark spin symmetry (HQSS) doublet. However, we argue that the available LQCD description of these two resonances is not accurate enough to disentangle the possible effects of the Sigma(c)pi and Sigma(c)*pi thresholds, located only a few MeV above their position, and that it cannot be ruled out that these states are not HQSS partners. Finally, we study the ratio d Gamma/[Lambda(b) -> Lambda(c,1/2)-*l (v) over bar (l)]/dq(2)/d Gamma/[Lambda(b) -> Lambda(c,3/2)-*l (v) over bar (l)]/dq(2) of the Standard Model differential semileptonic decay widths, with q the four-momentum transferred between the initial and final hadrons. We provide a natural explanation for the existence of large deviations, near the zero recoil, of this ratio from 1=2 (value predicted in the infinite heavy quark mass limit, assuming that the Lambda(c,1/2)- and Lambda(c,3/2)- are the two members of a HQSS doublet) based on S-wave contributions to the Lambda(b) -> Lambda(c,1/2)- decay amplitude driven by a subleading IW function.
Address [Du, Meng-Lin; Nieves, Juan] Inst Fis Corpuscular Ctr Mixto CSIC UV, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: du.ml@uestc.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000905088600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5454
Permanent link to this record