|   | 
Details
   web
Records
Author Addazi, A. et al; Martinez-Mirave, P.; Mitsou, V.A.; Palomares-Ruiz, S.; Tortola, M.; Zornoza, J.D.
Title Quantum gravity phenomenology at the dawn of the multi-messenger era-A review Type Journal Article
Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 125 Issue Pages 103948 - 119pp
Keywords Lorentz invariance violation and deformation; Gamma-ray astronomy; Cosmic neutrinos; Ultra-high-energy cosmic rays; Gravitational waves
Abstract (up) The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
Address [Addazi, A.] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: jcarmona@unizar.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000830343400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5312
Permanent link to this record
 

 
Author Gariazzo, S.; Gerbino, M.; Brinckmann, T.; Lattanzi, M.; Mena, O.; Schwetz, T.; Choudhury, S.R.; Freese, K.; Hannestad, S.; Ternes, C.A.; Tortola, M.
Title Neutrino mass and mass ordering: no conclusive evidence for normal ordering Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 010 - 18pp
Keywords Bayesian reasoning; neutrino properties; neutrino masses from cosmology; cosmological parameters from CMBR
Abstract (up) The extraction of the neutrino mass ordering is one of the major challenges in particle physics and cosmology, not only for its implications for a fundamental theory of mass generation in nature, but also for its decisive role in the scale of future neutrinoless double beta decay experimental searches. It has been recently claimed that current oscillation, beta decay and cosmological limits on the different observables describing the neutrino mass parameter space provide robust decisive Bayesian evidence in favor of the normal ordering of the neutrino mass spectrum [1]. We further investigate these strong claims using a rich and wide phenomenology, with different sampling techniques of the neutrino parameter space. Contrary to the findings of Jimenez et al. [1], no decisive evidence for the normal mass ordering is found. Neutrino mass ordering analyses must rely on priors and parameterizations that are ordering-agnostic: robust results should be regarded as those in which the preference for the normal neutrino mass ordering is driven exclusively by the data, while we find a difference of up to a factor of 33 in the Bayes factors among the different priors and parameterizations exploited here. An ordering-agnostic prior would be represented by the case of parameterizations sampling over the two mass splittings and a mass scale, or those sampling over the individual neutrino masses via normal prior distributions only. In this regard, we show that the current significance in favor of the normal mass ordering should be taken as 2.7 sigma (i.e. moderate evidence), mostly driven by neutrino oscillation data. Let us stress that, while current data favor NO only mildly, we do not exclude the possibility that this may change in the future. Eventually, upcoming oscillation and cosmological data may (or may not) lead to a more significant exclusion of IO.
Address [Gariazzo, Stefano; Ternes, Christoph A.] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000928487200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5477
Permanent link to this record
 

 
Author Moline, A.; Schewtschenko, J.A.; Palomares-Ruiz, S.; Boehm, C.; Baugh, C.M.
Title Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 069 - 23pp
Keywords dark matter simulations; dark matter theory; gamma ray theory
Abstract (up) The extragalactic gamma-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (ACDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the gamma-ray and neutrino emission in these models may differ from ACDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in ACDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond ACDM as being due to CDM particles annihilating with a much weaker cross section than expected.
Address [Moline, Angeles] Univ Tecn Lisboa, Inst Super Tecn, CFTP, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: maria.moline@ist.utl.pt;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000389859100053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2900
Permanent link to this record
 

 
Author Aggarwal, N. et al; Figueroa, D.G.
Title Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies Type Journal Article
Year 2021 Publication Living Reviews in Relativity Abbreviated Journal Living Rev. Relativ.
Volume 24 Issue 1 Pages 4 - 74pp
Keywords Ultra-high-frequency gravitational waves; Cosmological gravitational waves; Gravitational wave detectors; Fundamental physics with gavitational waves
Abstract (up) The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts that have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop “Challenges and opportunities of high-frequency gravitational wave detection” held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.
Address [Aggarwal, Nancy] Northwestern Univ, Dept Phys & Astron, Ctr Interdisciplinary Explorat & Res Astrophys CI, Ctr Fundamental Phys, Evanston, IL 60208 USA, Email: nancy.aggarwal@northwestern.edu;
Corporate Author Thesis
Publisher Springer Int Publ Ag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-3613 ISBN Medium
Area Expedition Conference
Notes WOS:000727359500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5074
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Carretero, V.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 092 - 17pp
Keywords neutrino astronomy; ultra high energy photons and neutrinos; particle acceleration; gamma ray bursts theory
Abstract (up) The first gamma-ray burst detections by Imaging Atmospheric Cherenkov Telescopes have been recently announced: GRB 190114C, detected by MAGIC, GRB 180720B and GRB 190829A, observed by H.E.S.S. A dedicated search for neutrinos in space and time coincidence with the gamma-ray emission observed by IACTs has been performed using ANTARES data. The search covers both the prompt and afterglow phases, yielding no neutrinos in coincidence with the three GRBs studied. Upper limits on the energetics of the neutrino emission are inferred. The resulting upper limits are several orders of magnitude above the observed gamma-ray emission, and they do not allow to constrain the available models.
Address [Albert, A.; Drouhin, D.; Huanga, F.; James, C. W.; de Jong, M.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400087 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4781
Permanent link to this record