toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Park, J.H. url  doi
openurl 
  Title Lepton flavor violation from right-handed neutrino thresholds Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 9 Pages 095005 - 6pp  
  Keywords  
  Abstract (up) Charged lepton flavor violation is reappraised in the context of a supersymmetric seesaw mechanism. It is pointed out that a nontrivial flavor structure of right-handed neutrinos, whose effect has been thus far less studied, can give rise to significant slepton flavor transitions. Under the premise that the neutrino Yukawa couplings are of O(1), the right-handed neutrino mixing contribution could form a basis of the μ-> e gamma amplitude, which by itself might lead to an experimentally accessible rate, given a typical low-energy sparticle spectrum. Emphasis is placed on the crucial role of the recently measured lepton mixing angle theta(13) as well as the leptonic CP-violating phases.  
  Address [Park, Jae-hyeon] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335532400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1788  
Permanent link to this record
 

 
Author Martinez de Lejarza, J.J.; Cieri, L.; Rodrigo, G. url  doi
openurl 
  Title Quantum clustering and jet reconstruction at the LHC Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 3 Pages 036021 - 16pp  
  Keywords  
  Abstract (up) Clustering is one of the most frequent problems in many domains, in particular, in particle physics where jet reconstruction is central in experimental analyses. Jet clustering at the CERN's Large Hadron Collider (LHC) is computationally expensive and the difficulty of this task will increase with the upcoming High-Luminosity LHC (HL-LHC). In this paper, we study the case in which quantum computing algorithms might improve jet clustering by considering two novel quantum algorithms which may speed up the classical jet clustering algorithms. The first one is a quantum subroutine to compute a Minkowski-based distance between two data points, whereas the second one consists of a quantum circuit to track the maximum into a list of unsorted data. The latter algorithm could be of value beyond particle physics, for instance in statistics. When one or both of these algorithms are implemented into the classical versions of well-known clustering algorithms (K-means, affinity propagation, and k(T) -jet) we obtain efficiencies comparable to those of their classical counterparts. Even more, exponential speed-up could be achieved, in the first two algorithms, in data dimensionality and data length when the distance algorithm or the maximum searching algorithm are applied.  
  Address [Martinez de Lejarza, Jorge J.; Cieri, Leandro; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: Jorge.M.Lejarza@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000850823300008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5357  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Combined measurements of Higgs boson production and decay using up to 80 fb(-1) of proton-proton collision data at root S=13 TeV collected with the ATLAS experiment Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 1 Pages 012002 - 48pp  
  Keywords  
  Abstract (up) Combined measurements of Higgs boson production cross sections and branching fractions arc presented. The combination is based on the analyses of the Higgs boson decay modes H -> gamma gamma, ZZ*, WW*, tau tau, b (b) over bar, μmu, searches for decays into invisible final states, and on measurements of off-shell Higgs boson production. Up to 79.8 fb(-1) of proton-proton collision data collected at root S = 13 TeV with the ATLAS detector are used. Results are presented for the gluon-gluon fusion and vector-boson fusion processes, and for associated production with vector bosons or top-quarks. The global signal strength is determined to be μ= 1.11(-0.08)(+0.09). The combined measurement yields an observed (expected) significance for the vector-boson fusion production process of 6.5 sigma (5.3 sigma). Measurements in kinematic regions defined within the simplified template cross section framework are also shown. The results are interpreted in terms of modifiers applied to the Standard Model couplings of the Higgs boson to other particles, and are used to set exclusion limits on parameters in two-Higgs-doublet models and in the simplified minimal supersynunetric Standard Model. No significant deviations from Standard Model predictions are observed.  
  Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000505485600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4245  
Permanent link to this record
 

 
Author Barenboim, G.; Denton, P.B.; Oldengott, I.M. url  doi
openurl 
  Title Constraints on inflation with an extended neutrino sector Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 8 Pages 083515 - 9pp  
  Keywords  
  Abstract (up) Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator (m(phi) similar to MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index n(s). These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the cosmic neutrino background for nearly all of the relevant parameter space.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000464746300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3980  
Permanent link to this record
 

 
Author Martinelli, M.; Lopez Honorez, L.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Future CMB cosmological constraints in a dark coupled universe Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 10 Pages 103534 - 7pp  
  Keywords  
  Abstract (up) Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278146700047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 429  
Permanent link to this record
 

 
Author Giare, W.; Mena, O.; Di Valentino, E. url  doi
openurl 
  Title Lensing impact on cosmic relics and tensions Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 10 Pages 103539 - 9pp  
  Keywords  
  Abstract (up) Cosmological bounds on neutrinos and additional hypothetical light thermal relics, such as QCD axions, are currently among the most restrictive ones. These limits mainly rely on cosmic microwave background temperature anisotropies. Nonetheless, one of the largest cosmological signatures of thermal relics is that on gravitational lensing, due to their free-streaming behavior before their nonrelativistic period. We investigate late-time only hot-relic mass constraints, primarily based on recently released lensing data from the Atacama Cosmology Telescope, both alone and in combination with lensing data from the Planck satellite. Additionally, we consider other local probes, such as baryon acoustic oscillations measurements, shear-shear, galaxy-galaxy, and galaxy-shear correlation functions from the dark energy survey, and distance moduli measurements from Type-Ia Supernovae. The tightest bounds we find are Sigma m(v) < 0.43 eV and m(a) < 1.1 eV, both at 95% CL Interestingly, these limits are still much stronger than those found on e.g., laboratory neutrino mass searches, reassessing the robustness of the extraction of thermal relic properties via cosmological observations. In addition, when considering lensing-only data, the significance of the Hubble constant tension is considerably reduced, while the clustering parameter sigma 8 controversy is completely absent.  
  Address [Giare, William] Univ Sheffield, Sch Math & Stat, Consortium Fundamental Phys, Hounsfield Rd, Sheffield S3 7RH, England, Email: w.giare@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001121804800014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5862  
Permanent link to this record
 

 
Author Giusarma, E.; de Putter, R.; Mena, O. url  doi
openurl 
  Title Testing standard and nonstandard neutrino physics with cosmological data Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 4 Pages 043515 - 9pp  
  Keywords  
  Abstract (up) Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.  
  Address [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314765800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1326  
Permanent link to this record
 

 
Author Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Sterile neutrino models and nonminimal cosmologies Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 8 Pages 083522 - 9pp  
  Keywords  
  Abstract (up) Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303118100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 984  
Permanent link to this record
 

 
Author Figueroa, D.G.; Hindmarsh, M.; Lizarraga, J.; Urrestilla, J. url  doi
openurl 
  Title Irreducible background of gravitational waves from a cosmic defect network: Update and comparison of numerical techniques Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 10 Pages 103516 - 25pp  
  Keywords  
  Abstract (up) Cosmological phase transitions in the early Universe may produce relics in the form of a network of cosmic defects. Independently of the order of a phase transition, topology of the defects, and their global or gauge nature, the defects are expected to emit gravitational waves (GWs) as the network energy-momentum tensor adapts itself to maintaining scaling. We show that the evolution of any defect network (and for that matter any scaling source) emits a GW background with spectrum Omega(GW) proportional to f(3) for f << f(0), Omega(GW) proportional to 1/f(2) for f(0) less than or similar to f less than or similar to feq, and Omega(GW) proportional to const (i.e., exactly scale invariant) for f >> f(eq), where f(0) and f(eq) denote respectively the frequencies corresponding to the present and matter-radiation equality horizons. This background represents an irreducible emission of GWs from any scaling network of cosmic defects, with its amplitude characterized only by the symmetry-breaking scale and the nature of the defects. Using classical lattice simulations we calculate the GW signal emitted by defects created after the breaking of a global symmetry O(N) -> O(N – 1). We obtain the GW spectrum for N between 2 and 20 with two different techniques: integrating over unequal-time correlators of the energy-momentum tensor, updating our previous work on smaller lattices, and for the first time, comparing the result with the real-time evolution of the tensor perturbations sourced by the same defects. Our results validate the equivalence of the two techniques. Using cosmic microwave background upper bounds on the defects' energy scale, we discuss the difficulty of detecting this GW background in the case of global defects.  
  Address [Figueroa, Daniel G.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000589181600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4618  
Permanent link to this record
 

 
Author Yang, W.Q.; Mena, O.; Pan, S.; Di Valentino, E. url  doi
openurl 
  Title Dark sectors with dynamical coupling Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 8 Pages 083509 - 11pp  
  Keywords  
  Abstract (up) Coupled dark matter-dark energy scenarios arc modeled via a dimensionless parameter xi, which controls the strength of their interaction. While this coupling is commonly assumed to be constant, there is no underlying physical law or symmetry that forbids a time-dependent xi parameter. The most general and complete interacting scenarios between the two dark sectors should therefore allow for such a possibility, and it is the main purpose of this study to constrain two possible and well-motivated coupled cosmologies by means of the most recent and accurate early- and late-time universe observations. We find that CMB data alone prefer xi(z) > 0 and therefore a smaller amount of dark matter, alleviating some crucial and well-known cosmological data tensions. An objective assessment of the Bayesian evidence for the coupled models explored here shows no particular preference for the presence of a dynamical dark sector coupling.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000489039100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4166  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva