|   | 
Details
   web
Records
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Mena, O.
Title Impact of the damping tail on neutrino mass constraints Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 8 Pages 083509 - 11pp
Keywords
Abstract (up) Model-independent mass limits assess the robustness of current cosmological measurements of the neutrino mass scale. Consistency between high-multipole and low-multiple cosmic microwave background observations measuring such scale further valuates the constraining power of present data. We derive here up-to-date limits on neutrino masses and abundances exploiting either the Data Release 4 of the Atacama Cosmology Telescope (ACT) or the South Pole Telescope polarization measurements from SPT-3G, envisaging different nonminimal background cosmologies and marginalizing over them. By combining these high-l observations with supernova Ia, baryon acoustic oscillations (BAO), redshift space distortions (RSD) and a prior on the reionization optical depth fromWMAP data, we find that the marginalized bounds are competitive with those from Planck analyses. We obtain Sigma m(nu) < 0.139 eV and N-eff = 2.82 +/- 0.25 in a dark energy quintessence scenario, both at 95% CL. These limits translate into Sigma m(nu) < 0.20 eV and N-eff = 2.79(-0.28)(+0.30) after marginalizing over a plethora of well-motivated fiducial models. Our findings reassess both the strength and the reliability of cosmological neutrino mass constraints.
Address [Di Valentino, Eleonora; Giare, William] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001157784100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5935
Permanent link to this record
 

 
Author Caron, S.; Ruiz de Austri, R.; Zhang, Z.Y.
Title Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 004 - 37pp
Keywords Specific BSM Phenomenology; Supersymmetry
Abstract (up) Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.
Address [Caron, Sascha; Zhang, Zhongyi] Radboud Univ Nijmegen, High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000943095100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5494
Permanent link to this record
 

 
Author IDS Collaboration (Heideman, J. et al); Algora, A.; Morales, A.I.
Title Evidence of nonstatistical neutron emission following beta decay near doubly magic Sn-132 Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 2 Pages 024311 - 9pp
Keywords
Abstract (up) Models of the beta-delayed neutron emission (beta n) assume that neutrons are emitted statistically via an intermediate compound nucleus post beta decay. Evidence to the contrary was found in an In-134 beta-decay experiment carried out at ISOLDE CERN. Neutron emission probabilities from the unbound states in Sn-134 to known low-lying, single-particle states in Sn-133 were measured. The neutron energies were determined using the time-of-flight technique, and the subsequent decay of excited states in Sn-133 was studied using gamma-ray detectors. Individual beta n probabilities were determined by correlating the relative intensities and energies of neutrons and gamma rays. The experimental data disagree with the predictions of representative statistical models which are based upon the compound nucleus postulate. Our results suggest that violation of the compound nucleus assumption may occur in beta-delayed neutron emission. This impacts the neutron-emission probabilities and other properties of nuclei participating in the r-process. A model of neutron emission, which links the observed neutron emission probabilities to nuclear shell effects, is proposed.
Address [Heideman, J.; Grzywacz, R.; Xu, Z. Y.; Madurga, M.; Halverson, C.; King, T. T.; Singh, M.; Yokoyama, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001053419100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5620
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P.
Title Constraining postinflationary axions with pulsar timing arrays Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 12 Pages 123516 - 16pp
Keywords
Abstract (up) Models that produce axionlike particles (ALPs) after cosmological inflation due to spontaneous U(1) symmetry breaking also produce cosmic-string networks. Those axionic strings lose energy through gravitational-wave emission during the whole cosmological history, generating a stochastic background of gravitational waves that spans many decades in frequency. We can therefore constrain the axion decay constant and axion mass from limits on the gravitational-wave spectrum and compatibility with dark matter abundance as well as dark radiation. We derive such limits from analyzing the most recent NANOGrav data from pulsar timing arrays (PTAs). The limits are similar to the Neff bounds on dark radiation for ALP masses ma less than or similar to 10-22 eV. On the other hand, for heavy ALPs with ma greater than or similar to 0.1 GeV and NDW not equal 1, new regions of parameter space can be probed by PTA data due to the dominant domain-wall contribution to the gravitational-wave background.
Address [Servant, Geraldine] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: geraldine.servant@desy.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001155748800012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5933
Permanent link to this record
 

 
Author Perez-Vidal, R.M.; Galtarossa, F.; Mijatovic, T.; Szilner, S.; Zanon, I.; Brugnara, D.; Pellumaj, J.; Ciemala, M.; Valiente-Dobon, J.J.; Corradi, L.; Clement, E.; Leoni, S.; Fornal, B.; Siciliano, M.; Gadea, A.
Title Nuclear structure advancements with multi-nucleon transfer reactions Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 5 Pages 114 - 15pp
Keywords
Abstract (up) Multi-Nucleon Transfer (MNT) reactions have been used for decades as a reaction mechanism, in order to populate excited states in nuclei far from stability and to perform nuclear structure studies. Nevertheless, the development of set-ups involving high acceptance tracking magnetic spectrometers (mainly existing in Europe), coupled with the Advanced GAmma Tracking Array (AGATA) opens new possibilities, especially if they are used in conjunction with high-intensity stable beams or ISOL RIBs. In this article, we will discuss the capabilities of such set-ups aiming at different goals, including complete information in high-resolution spectroscopy as well as lifetime measurements.
Address [Perez-Vidal, R. M.; Gadea, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia 46980, Spain, Email: gadea@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000994875500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5537
Permanent link to this record