toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author AGATA Collaboration (Liu, X. et al); Gadea, A.; Jurado, M.; Domingo-Pardo, C.; Huyuk, T.; Perez-Vidal, R.M. doi  openurl
  Title Evidence for enhanced neutron-proton correlations from the level structure of the N = Z+1 nucleus Tc-87(43)44 Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 2 Pages L021302 - 5pp  
  Keywords  
  Abstract (down) The low-lying excited states in the neutron-deficient N = Z + 1 nucleus (87)(43)Tcc(44) have been studied via the fusion-evaporation reaction Fe-54(Ar-36, 2n1p)Tc-87 at the Grand Accelerateur National d'Ions Lourds (GANIL), France. The AGATA spectrometer was used in conjunction with the auxiliary NEDA, Neutron Wall, and DIAMANT detector arrays to measure coincident prompt gamma rays, neutrons, and charged particles emitted in the reaction. A level scheme of Tc-87 from the (9/2(g.s.)(+)) state to the (33/2(1)(+)) state was established based on six mutually coincident gamma-ray transitions. The constructed level structure exhibits a rotational behavior with a sharp backbending at (h) over bar omega approximate to 0.50 MeV. A decrease in alignment frequency and increase in alignment sharpness in the odd-mass isotonic chains around N = 44 is proposed as an effect of the enhanced isoscalar neutron-proton interactions in odd-mass nuclei when approaching the N = Z line.  
  Address [Liu, X.; Cederwall, B.; Qi, C.; Wyss, R. A.; Aktas, O.; Ertoprak, A.; Zhang, W.; Nyberg, A. Atac; Back, T.] Royal Inst Technol, Dept Phys, S-10405 Stockholm, Sweden, Email: xiaoyuli@kth.se  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686912200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4942  
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.D.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Prisco, R.M.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F. url  doi
openurl 
  Title A Stroll through the Loop-Tree Duality Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 6 Pages 1029 - 37pp  
  Keywords Feynman integrals; multi-loop calculations; perturbative QFT; higher orders  
  Abstract (down) The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.  
  Address [de Jesus Aguilera-Verdugo, Jose; Driencourt-Mangin, Felix; Plenter, Judith; Selomit Ramirez-Uribe, Norma; Ernesto Renteria-Olivo, Andres; Rodrigo, German; Sborlini, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Paterna, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000666742200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4889  
Permanent link to this record
 

 
Author Agostini, P. et al; Mandal, S. url  doi
openurl 
  Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
  Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 48 Issue 11 Pages 110501 - 364pp  
  Keywords deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics  
  Abstract (down) The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.  
  Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000731762500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5067  
Permanent link to this record
 

 
Author Fernandez Casani, A.; Orduña, J.M.; Sanchez, J.; Gonzalez de la Hoz, S. doi  openurl
  Title A Reliable Large Distributed Object Store Based Platform for Collecting Event Metadata Type Journal Article
  Year 2021 Publication Journal of Grid Computing Abbreviated Journal J. Grid Comput.  
  Volume 19 Issue 3 Pages 39 - 19pp  
  Keywords Grid computing; Hadoop file system; Object-Based storage  
  Abstract (down) The Large Hadron Collider (LHC) is about to enter its third run at unprecedented energies. The experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousands of physics users. The ATLAS EventIndex project, currently running in production, builds a complete catalogue of particle collisions, or events, for the ATLAS experiment at the LHC. The distributed nature of the experiment data model is exploited by running jobs at over one hundred Grid data centers worldwide. Millions of files with petabytes of data are indexed, extracting a small quantity of metadata per event, that is conveyed with a data collection system in real time to a central Hadoop instance at CERN. After a successful first implementation based on a messaging system, some issues suggested performance bottlenecks for the challenging higher rates in next runs of the experiment. In this work we characterize the weaknesses of the previous messaging system, regarding complexity, scalability, performance and resource consumption. A new approach based on an object-based storage method was designed and implemented, taking into account the lessons learned and leveraging the ATLAS experience with this kind of systems. We present the experiment that we run during three months in the real production scenario worldwide, in order to evaluate the messaging and object store approaches. The results of the experiment show that the new object-based storage method can efficiently support large-scale data collection for big data environments like the next runs of the ATLAS experiment at the LHC.  
  Address [Fernandez Casani, Alvaro; Sanchez, Javier; Gonzalez de la Hoz, Santiago] Univ Valencia, Inst Fis Corpuscular IFIC, Burjassot, Spain, Email: alvaro.fernandez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-7873 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000692413100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4953  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Observation of the Lambda(0)(b) -> Lambda+cK+K-pi(-) decay Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 815 Issue Pages 136172 - 10pp  
  Keywords  
  Abstract (down) The Lambda(0)(b) -> Lambda+cK+K-pi(-) decay is observed for the first time using a data sample of proton-proton collisions at centre-of-mass energies of root s = 7 and 8 TeV collected by the LHCb detector, corresponding to an integrated luminosity of 3fb(-1). The ratio of branching fractions between the Lambda(0)(b) -> Lambda K-+(c)+ K-pi(-) and the Lambda(0)(b) -> Lambda D-+(c)s(-) decays is measured to be B(Lambda(0)(b) -> Lambda+cK+K-pi(-))/B(Lambda(0)(b) -> Lambda D-+(c)s(-)) = (9.26 +/- 0.29 +/- 0.46 +/- 0.26) x 10(-2), where the first uncertainty is statistical, the second systematic and the third is due to the knowledge of the D-s(-) -> K+K-pi(-) branching fraction. No structure on the invariant mass distribution of the Lambda K-+(c)+ system is found, consistent with no open-charm pentaquark signature.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000632729200049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4777  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva