|   | 
Details
   web
Records
Author Ferreiro, A.; Torrenti, F.
Title Ultraviolet-regularized power spectrum without infrared distortions in cosmological spacetimes Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 840 Issue Pages 137868 - 6pp
Keywords
Abstract (down) We reexamine the regularization of the two-point function of a scalar field in a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. Adiabatic regularization provides a set of subtraction terms in momentum space that successfully remove its ultraviolet divergences at coincident points, but can significantly distort the power spectrum at infrared scales, especially for light fields. In this work we propose, by using the intrinsic ambiguities of the renormalization program, a new set of subtraction terms that minimize the distortions for scales k less than or similar to M, with M an arbitrary mass scale. Our method is consistent with local covariance and equivalent to general regularization methods in curved spacetime. We apply our results to the regularization of the power spectrum in de Sitter space: while the adiabatic scheme yields exactly Delta((reg))(phi) = 0 for a massless field, our proposed prescription recovers the standard scale-invariant result Delta((reg))(phi) similar or equal to H-2/(4 pi(2)) at super-horizon scales.
Address [Ferreiro, Antonio] Dublin City Univ, Ctr Astrophys & Relat, Sch Math Sci, Dublin 9, Ireland, Email: antonio.ferreiro@dcu.ie;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000968486900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5514
Permanent link to this record
 

 
Author Avila, I.M.; De Romeri, V.; Duarte, L.; Valle, J.W.F.
Title Phenomenology of scotogenic scalar dark matter Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 10 Pages 908 - 19pp
Keywords
Abstract (down) We reexamine the minimal Singlet + Triplet Scotogenic Model, where dark matter is the mediator of neutrino mass generation. We assume it to be a scalar WIMP, whose stability follows from the same Z(2) symmetry that leads to the radiative origin of neutrino masses. The scheme is the minimal one that allows for solar and atmospheric mass scales to be generated. We perform a full numerical analysis of the signatures expected at dark matter as well as collider experiments. We identify parameter regions where dark matter predictions agree with theoretical and experimental constraints, such as neutrino oscillations, Higgs data, dark matter relic abundance and direct detection searches. We also present forecasts for near future direct and indirect detection experiments. These will further probe the parameter space. Finally, we explore collider signatures associated with the mono jet channel at the LHC, highlighting the existence of a viable light dark matter mass range.
Address [Avila, Ivania M.] Pontificia Univ Catolica Chile, Inst Fis, Av Vicuna Mackenna, Santiago 4860, Chile, Email: idmaturana@uc.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000576966100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4563
Permanent link to this record
 

 
Author Amerio, A.; Cuoco, A.; Fornengo, N.
Title Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 029 - 39pp
Keywords gamma ray theory; Machine learning
Abstract (down) We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the FermiLAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1, 10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from cataloged sources, and then extends as dN/dS " S-2 in the unresolved regime, down to fluxes of 5 center dot 10-12 cm-2 s-1. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.
Address [Amerio, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001097055700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5785
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K.
Title Impact of COHERENT measurements, cross section uncertainties and new interactions on the neutrino floor Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 055 - 26pp
Keywords dark matter detectors; dark matter experiments; neutrino properties; solar and atmospheric neutrinos
Abstract (down) We reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process. Assuming the cross section to be a parameter entirely determined by data, rather than using its Standard Model prediction, we use the COHERENT CsI and LAr data sets to determine WIMP discovery limits. Being based on a data-driven approach, the results are thus free from theoretical assumptions and fall within the WIMP mass regions where XENONnT and DARWIN have best expected sensitivities. We further determine the impact of subleading nuclear form factor and weak mixing angle uncertainties effects on WIMP discovery limits. We point out that these effects, albeit small, should be taken into account. Moreover, to quantify the impact of new physics effects in the neutrino background, we revisit WIMP discovery limits assuming light vector and scalar mediators as well as neutrino magnetic moments/transitions. We stress that the presence of new interactions in the neutrino sector, in general, tend to worsen the WIMP discovery limit.
Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000751303400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5123
Permanent link to this record
 

 
Author Molina, R.; Oset, E.
Title Molecular picture for the X-0(2866) as a D*(K)over-bar* J(P)=0(+) state and related 1(+), 2(+) states Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 811 Issue Pages 135870 - 7pp
Keywords
Abstract (down) We recall the predictions made ten years ago about a bound state of J(P) = 0(+) in I = 0 of the D*(K) over bar* system, which is manifestly exotic, and we associate it to the X-0(2866) state reported in the recent LHCb experiment. Fine tuning the parameters to reproduce exactly the mass and width of the X-0(2866) state, we report two more states stemming from the same interaction, one with 1(+) and the other with 2(+). For reasons of parity, the 1(+) state cannot be observed in D (K) over bar decay, and we suggest to observe it in the D*(K) over bar spectrum. On the other hand, the 2(+) state can be observed in D (K) over bar decay but the present experiment has too small statistics in the region of its mass to make any claim. We note that measurements of the D*(K) over bar spectrum and of the D (K) over bar with more statistics should bring important information concerning the nature of the X-0(2866) and related ones that could be observed.
Address [Molina, R.; Oset, E.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: Raquel.Molina@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000612225400022 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4701
Permanent link to this record