|   | 
Details
   web
Records
Author Barenboim, G.; Calatayud-Cadenillas, A.M.; Gago, A.M.; Ternes, C.A.
Title Quantum decoherence effects on precision measurements at DUNE and T2HK Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 852 Issue Pages 138626 - 11pp
Keywords
Abstract (up) We investigate the potential impact of neutrino quantum decoherence on the precision measurements of standard neutrino oscillation parameters in the DUNE and T2HK experiments. We show that the measurement of delta(CP), sin(2) theta(13) and sin(2) theta(23) is stronger effected in DUNE than in T2HK. On the other hand, DUNE would have a better sensitivity than T2HK to observe decoherence effects. By performing a combined analysis of DUNE and T2HK we show that a robust measurement of standard parameters would be possible, which is not guaranteed with DUNE data alone.
Address [Barenboim, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001229361000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6131
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.; Sanchez-Velez, R.
Title Examining the sensitivity of FASERν to generalized neutrino interactions Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 102 - 25pp
Keywords Non-Standard Neutrino Properties; Neutrino Interactions; Electroweak Precision Physics
Abstract (up) We investigate the sensitivity of the FASER nu detector, a novel experimental setup at the LHC, to probe and constrain generalized neutrino interactions (GNI). Employing a comprehensive theoretical framework, we model the effects of generalized neutrino interactions on neutrino-nucleon deep inelastic scattering processes within the FASER nu detector. By considering all the neutrino channels produced at the LHC, we perform a statistical analysis to determine the sensitivity of FASER nu to constrain these interactions. Our results demonstrate that FASER nu can place stringent constraints on the GNI effective couplings. Additionally, we study the relation between GNI and a minimal Leptoquark model where the SM is augmented by a singlet Leptoquark with hypercharge 1/3. We have found that the sensitivities for various combinations of the Leptoquark Yukawa couplings are approximately O(1), particularly when considering a Leptoquark mass in the TeV range.
Address [Escrihuela, F. J.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255987500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6176
Permanent link to this record
 

 
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J.
Title Numerical evolutions of boson stars in Palatini f(R) gravity Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 4 Pages 044042 - 14pp
Keywords
Abstract (up) We investigate the time evolution of spherically symmetric boson stars in Palatini f(R) gravity through numerical relativity computations. Employing a novel approach that establishes a correspondence between modified gravity with scalar matter and general relativity with modified scalar matter, we are able to use the techniques of numerical relativity to simulate these systems. Specifically, we focus on the quadratic theory f(R) = R + xi R2 and compare the obtained solutions with those in general relativity, exploring both positive and negative values of the coupling parameter xi. Our findings reveal that boson stars in Palatini f(R) gravity exhibit both stable and unstable evolutions. The latter give rise to three distinct scenarios: migration toward a stable configuration, complete dispersion, and gravitational collapse leading to the formation of a baby universe structure.
Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Ctr Mixto Univ Valencia, Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.maso@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001186268100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6035
Permanent link to this record
 

 
Author Ikeno, N.; Liang, W.H.; Oset, E.
Title Molecular nature of the Ωc(3120) and its analogy with the Ω(2012) Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 5 Pages 054023 - 7pp
Keywords
Abstract (up) We make a study of the omega c(3120) , one of the five omega c states observed by the LHCb Collaboration, which is well reproduced as a molecular state from the Xi*cK over bar and omega*c17 channels mostly. The state with JP = 3/2- decays to Xi cK over bar in the D wave, and we include this decay channel in our approach, as well as the effect of the Xi*c width. With all these ingredients, we determine the fraction of the omega c(3120) width that goes into Xi cK over bar K , which could be a measure of the Xi*cK over bar molecular component, but due to a relatively big binding, compared to its analogous omega(2012) state, we find only a small fraction of about 3%, which makes this measurement difficult with present statistics. As an alternative, we evaluate the scattering length and effective range of the Xi*c K over bar and omega*c17 channels, which, together with the binding and width of the omega c(3120) state, could give us an answer to the issue of the compositeness of this state when these magnitudes are determined experimentally, something feasible nowadays, for instance, measuring correlation functions.
Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: liangwh@gxnu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001195439400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6054
Permanent link to this record
 

 
Author Feijoo, A.; Dai, L.R.; Abreu, L.M.; Oset, E.
Title Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 1 Pages 016014 - 8pp
Keywords
Abstract (up) We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.
Address [Feijoo, A.; Dai, L. R.; Oset, E.] Univ Valencia, Inst Invest Paterna, Dept Fis Teor, Ctr Mixto,CSIC, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001172361900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6078
Permanent link to this record