|   | 
Details
   web
Records
Author Stoppa, F.; Bhattacharyya, S.; Ruiz de Austri, R.; Vreeswijk, P.; Caron, S.; Zaharijas, G.; Bloemen, S.; Principe, G.; Malyshev, D.; Vodeb, V.; Groot, P.J.; Cator, E.; Nelemans, G.
Title AutoSourceID-Classifier Star-galaxy classification using a convolutional neural network with spatial information Type Journal Article
Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 680 Issue Pages A109 - 16pp
Keywords methods: data analysis; techniques: image processing; astronomical databases: miscellaneous; stars: imaging; Galaxies: statistics
Abstract (up) Aims. Traditional star-galaxy classification techniques often rely on feature estimation from catalogs, a process susceptible to introducing inaccuracies, thereby potentially jeopardizing the classification's reliability. Certain galaxies, especially those not manifesting as extended sources, can be misclassified when their shape parameters and flux solely drive the inference. We aim to create a robust and accurate classification network for identifying stars and galaxies directly from astronomical images.Methods. The AutoSourceID-Classifier (ASID-C) algorithm developed for this work uses 32x32 pixel single filter band source cutouts generated by the previously developed AutoSourceID-Light (ASID-L) code. By leveraging convolutional neural networks (CNN) and additional information about the source position within the full-field image, ASID-C aims to accurately classify all stars and galaxies within a survey. Subsequently, we employed a modified Platt scaling calibration for the output of the CNN, ensuring that the derived probabilities were effectively calibrated, delivering precise and reliable results.Results. We show that ASID-C, trained on MeerLICHT telescope images and using the Dark Energy Camera Legacy Survey (DECaLS) morphological classification, is a robust classifier and outperforms similar codes such as SourceExtractor. To facilitate a rigorous comparison, we also trained an eXtreme Gradient Boosting (XGBoost) model on tabular features extracted by SourceExtractor. While this XGBoost model approaches ASID-C in performance metrics, it does not offer the computational efficiency and reduced error propagation inherent in ASID-C's direct image-based classification approach. ASID-C excels in low signal-to-noise ratio and crowded scenarios, potentially aiding in transient host identification and advancing deep-sky astronomy.
Address [Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Groot, P. J.; Nelemans, G.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: f.stoppa@astro.ru.nl
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:001131898100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5888
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data Type Journal Article
Year 2013 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 559 Issue Pages A9 - 11pp
Keywords neutrinos; gamma-ray burst: general; methods: numerical
Abstract (up) Aims. We search for muon neutrinos in coincidence with GRBs with the ANTARES neutrino detector using data from the end of 2007 to 2011. Methods. Expected neutrino fluxes were calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code were employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 GRBs in the given period was optimised using an extended maximum-likelihood strategy. Results. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to the model.
Address [Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain, Email: criviere@cppm.in2p3.fr;
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000327847200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1691
Permanent link to this record
 

 
Author Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Bhattacharyya, S.; Caron, S.; Johannesson, G.; Ruiz de Austri, R.; van den Oetelaar, C.; Zaharijas, G.; Groot, P.J.; Cator, E.; Nelemans, G.
Title AutoSourceID-Light Fast optical source localization via U-Net and Laplacian of Gaussian Type Journal Article
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 662 Issue Pages A109 - 8pp
Keywords astronomical databases; miscellaneous; methods; data analysis; stars; imaging; techniques; image processing
Abstract (up) Aims. With the ever-increasing survey speed of optical wide-field telescopes and the importance of discovering transients when they are still young, rapid and reliable source localization is paramount. We present AutoSourceID-Light (ASID-L), an innovative framework that uses computer vision techniques that can naturally deal with large amounts of data and rapidly localize sources in optical images. Methods. We show that the ASID-L algorithm based on U-shaped networks and enhanced with a Laplacian of Gaussian filter provides outstanding performance in the localization of sources. A U-Net network discerns the sources in the images from many different artifacts and passes the result to a Laplacian of Gaussian filter that then estimates the exact location. Results. Using ASID-L on the optical images of the MeerLICHT telescope demonstrates the great speed and localization power of the method. We compare the results with SExtractor and show that our method outperforms this more widely used method. ASID-L rapidly detects more sources not only in low- and mid-density fields, but particularly in areas with more than 150 sources per square arcminute. The training set and code used in this paper are publicly available.
Address [Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Groot, P. J.; Nelemans, G.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: f.stoppa@astro.ru.nl
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000818665600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5291
Permanent link to this record
 

 
Author Bernal, N.; Forero-Romero, J.E.; Garani, R.; Palomares-Ruiz, S.
Title Systematic uncertainties from halo asphericity in dark matter searches Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 004 - 30pp
Keywords dark matter theory; dark matter simulations
Abstract (up) Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm(3). Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.
Address [Bernal, Nicolas] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01405 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000342642500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1958
Permanent link to this record
 

 
Author Beltran Jimenez, J.; de Andres, D.; Delhom, A.
Title Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity Type Journal Article
Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 37 Issue 22 Pages 225013 - 25pp
Keywords alternative theories of gravity; metric-affine gravity; anisotropic solutions
Abstract (up) Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.
Address [Jimenez, Jose Beltran] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000580878200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4576
Permanent link to this record