|   | 
Details
   web
Records
Author Maji, R.; Park, W.I.
Title Supersymmetric U(1)B-L flat direction and NANOGrav 15 year data Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 015 - 19pp
Keywords Cosmic strings; domain walls; monopoles; cosmological phase transitions; cosmology of theories beyond the SM; gravitational waves / sources
Abstract (down) We show that, when connected with monopoles, the flat D-flat direction breaking the local U(1)B-L symmetry as an extension of the minimal supersymmetric standard model can be responsible for the signal of a stochastic gravitational wave background recently reported by NANOGrav collaborations, while naturally satisfying constraints at high frequency band. Thanks to the flatness of the direction, a phase of thermal inflation arises naturally. The reheating temperature is quite low, and suppresses signals at frequencies higher than the characteristic frequency set by the reheating temperature. Notably, forthcoming spaced based experiments such as LISA can probe the cutoff frequency, providing an indirect clue of the scale of soft SUSY-breaking mass parameter.
Address [Maji, Rinku] Jeonbuk Natl Univ, Dept Phys, Lab Symmetry & Struct Universe, Jeonju 54896, South Korea, Email: rinkumaji9792@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001147733000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5967
Permanent link to this record
 

 
Author Barenboim, G.; Kinney, W.H.; Park, W.I.
Title Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 9 Pages 590 - 7pp
Keywords
Abstract (down) We show that, if they exist, lepton number asymmetries (L-alpha) of neutrino flavors should be distinguished from the ones (L-i) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on the mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than the conventional expectation, but they are not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constrained. The cosmological constraint on L-i for a specific case is presented as an illustration.
Address [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000410888500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3294
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title Resolving an ambiguity of Higgs couplings in the FSM, greatly improving thereby the model's predictive range and prospects Type Journal Article
Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 37 Issue 27 Pages 2250167 - 10pp
Keywords Framed standard model; Higgs decays; Yukawa couplings
Abstract (down) We show that, after resolving what was thought to be an ambiguity in the Higgs coupling, the FSM gives, apart from two extra terms (i) and (ii) to be specified below, an effective action in the standard sector which has the same form as the SM action, the two differing only in the values of the mass and mixing parameters of quarks and leptons which the SM takes as Finputs from experiment while the FSM obtains as a result of a fit with a few parameters. Hence, to the accuracy that these two sets of parameters agree in value, and they do to a good extent as shown in earlier work,' the FSM should give the same result as the SM in all the circumstances where the latter has been successfully applied, except for the noted modifications due to (i) and (ii). If so, it would be a big step forward for the FSM. The correction terms are: (i) a mixing between the SM's gamma – Z with a new vector boson in the hidden sector, (ii) a mixing between the standard Higgs with a new scalar boson also in the hidden sector. And these have been shown a few years back to lead to (i') an enhancement of the W mass over the SM value,(2) – and (ii') effects consistent with the g – 2 and some other anomalies,(3) precisely the two deviations from the SM reported by experiments(4,5) recently much in the news.
Address [Bordes, Jose] Univ Valencia, CSIC, Dept Fis Teor, Ctr Mixto, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000884996800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5414
Permanent link to this record
 

 
Author Oset, E.; Roca, L.
Title Triangle mechanism in tau -> f(1)(1285)pi nu(tau) decay Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 782 Issue Pages 332-338
Keywords
Abstract (down) We show that the tau(-) decay into f(1)(1285) pi(-)nu(tau) is dominated by a triangle loop mechanism with K*, (K) over bar* and K( or (K) over bar) as internal lines, which manifests a strong enhancement reminiscent of a nearby singularity present in the narrow K* limit and the near (K) over bar* K* threshold of the internal K* propagators. The f1(1285) is then produced by its coupling to the K* (K) over bar and (K) over bar* K which is obtained from a previous model where this resonance was dynamically generated as a molecular K* (K) over bar (or (K) over bar* K) state using the techniques of the chiral unitary approach. We make predictions for the f(1)pi mass distribution which significantly deviates from the phase-space shape, due to the distortion caused by the triangle mechanism and the K* (K) over bar threshold. We find a good agreement with the experimental value within uncertainties for the integrated partial decay width, which is a clear indication of the importance of the triangle mechanism in this decay and supports the dynamical origin of the f(1)(1285) as a K* (K) over bar and (K) over bar* K molecular state.
Address [Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: luisroca@um.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000438486900054 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3663
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D.
Title Mapping Ricci-based theories of gravity Into general relativity Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 2 Pages 021503 - 6pp
Keywords
Abstract (down) We show that the space of solutions of a wide class of Ricci-based metric-affine theories of gravity can be put into correspondence with the space of solutions of general relativity (GR). This allows us to use well-established methods and results from GR to explore new gravitational physics beyond it.
Address [Afonso, V. I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000423656900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3467
Permanent link to this record