toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Conde, D.; Castillo, F.L.; Escobar, C.; García, C.; Garcia Navarro, J.E.; Sanz, V.; Zaldívar, B.; Curto, J.J.; Marsal, S.; Torta, J.M. doi  openurl
  Title Forecasting Geomagnetic Storm Disturbances and Their Uncertainties Using Deep Learning Type Journal Article
  Year 2023 Publication Space Weather Abbreviated Journal Space Weather  
  Volume 21 Issue 11 Pages e2023SW003474 - 27pp  
  Keywords geomagnetic storms; deep learning; forecasting; SYM-H; uncertainties; hyper-parameter optimization  
  Abstract (up) Severe space weather produced by disturbed conditions on the Sun results in harmful effects both for humans in space and in high-latitude flights, and for technological systems such as spacecraft or communications. Also, geomagnetically induced currents (GICs) flowing on long ground-based conductors, such as power networks, potentially threaten critical infrastructures on Earth. The first step in developing an alarm system against GICs is to forecast them. This is a challenging task given the highly non-linear dependencies of the response of the magnetosphere to these perturbations. In the last few years, modern machine-learning models have shown to be very good at predicting magnetic activity indices. However, such complex models are on the one hand difficult to tune, and on the other hand they are known to bring along potentially large prediction uncertainties which are generally difficult to estimate. In this work we aim at predicting the SYM-H index characterizing geomagnetic storms multiple-hour ahead, using public interplanetary magnetic field (IMF) data from the Sun-Earth L1 Lagrange point and SYM-H data. We implement a type of machine-learning model called long short-term memory (LSTM) network. Our scope is to estimate the prediction uncertainties coming from a deep-learning model in the context of forecasting the SYM-H index. These uncertainties will be essential to set reliable alarm thresholds. The resulting uncertainties turn out to be sizable at the critical stages of the geomagnetic storms. Our methodology includes as well an efficient optimization of important hyper-parameters of the LSTM network and robustness tests.  
  Address [Conde, D.; Escobar, C.; Garcia, C.; Garcia, J. E.; Sanz, V.; Zaldivar, B.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Daniel.Conde@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Geophysical Union Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001104189700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5804  
Permanent link to this record
 

 
Author Linhart, V.; Burdette, D.; Chessi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages C01092 - 8pp  
  Keywords Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Compton imaging  
  Abstract (up) Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.  
  Address [Linhart, V.; Lacasta, C.; Llosa, G.; Stankova, V.] UVEG, CSIC, IFIC, Expt Phys Dept,Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Vladimir.Linhart@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291345600097 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 645  
Permanent link to this record
 

 
Author Archidiacono, M.; Gariazzo, S.; Giunti, C.; Hannestad, S.; Tram, T. url  doi
openurl 
  Title Sterile neutrino self-interactions: H-0 tension and short-baseline anomalies Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 029 - 20pp  
  Keywords cosmological neutrinos; cosmological parameters from CMBR; particle physics – cosmology connection; physics of the early universe  
  Abstract (up) Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of H-0 measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high l polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in narrow ranges around 1 eV remains consistent with both cosmology and SBL data.  
  Address [Archidiacono, Maria] Univ Milan, Via G Celoria 16, I-20133 Milan, Italy, Email: maria.archidiacono@unimi.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609105900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4688  
Permanent link to this record
 

 
Author Lopez-Ibañez, M.L.; Melis, A.; Jay Perez, M.; Vives, O. url  doi
openurl 
  Title Slepton non-universality in the flavor-effective MSSM Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 162 - 27pp  
  Keywords Quark Masses and SM Parameters; Supersymmetric Standard Model; Super-symmetry Breaking; Supersymmetric Effective Theories  
  Abstract (up) Supersymmetric theories supplemented by an underlying flavor-symmetry G(f) provide a rich playground for model building aimed at explaining the flavor structure of the Standard Model. In the case where supersymmetry breaking is mediated by gravity, the soft-breaking Lagrangian typically exhibits large tree-level flavor violating e ff ects, even if it stems from an ultraviolet flavor-conserving origin. Building on previous work, we continue our phenomenological analysis of these models with a particular emphasis on leptonicflavor observables. We consider three representative models which aim to explain the flavor structure of the lepton sector, with symmetry groups G(f) = Delta (27), A(4); and S-3.  
  Address [Luisa Lopez-Ibanez, M.; Melis, Aurora; Jay Perez, M.; Vives, Oscar] Univ Valencia, Dept Fis Teor, Dr Moliner 50, Burjassot, Valencia, Spain, Email: m.luisa.lopez-ibanez@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416356500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3382  
Permanent link to this record
 

 
Author Bernabeu, J. url  doi
openurl 
  Title Symmetries and Their Breaking in the Fundamental Laws of Physics Type Journal Article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 8 Pages 1316 - 27pp  
  Keywords flavour families; colour charges; gauge symmetries; chirality; discrete symmetries; neutrinos; spontaneous breaking  
  Abstract (up) Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) x U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark-Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter-antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout-Englert-Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564717500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4523  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva