toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Leitner, R.; Malinsky, M.; Roskovec, B.; Zhang, H. url  doi
openurl 
  Title Non-standard antineutrino interactions at Daya Bay Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 001 - 26pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract (down) We study the prospects of pinning down the effects of non-standard antineutrino interactions in the source and in the detector at the Daya Bay neutrino facility. It is well known that if the non-standard interactions in the detection process are of the same type as those in the production, their net effect can be subsumed into a mere shift in the measured value of the leptonic mixing angle theta(13). Relaxing this assumption, the ratio of the antineutrino spectra measured by the Daya Bay far and near detectors is distorted in a characteristic way, and good fits based on the standard oscillation hypothesis are no longer viable. We show that, under certain conditions, three years of Daya Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.  
  Address [Leitner, Rupert; Roskovec, Bedrich] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague 8, Czech Republic, Email: Rupert.Leitner@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298847200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 922  
Permanent link to this record
 

 
Author Campanario, F.; Rauch, M.; Sapeta, S. url  openurl
  Title ZZ production at high transverse momenta beyond NLO QCD Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 070 - 25pp  
  Keywords  
  Abstract (down) We study the production of the four-lepton final state l+l−l+l−, predominantly produced by a pair of electroweak Z bosons, ZZ. Using the LoopSim method, we merge NLO QCD results for ZZ and ZZ+jet and obtain approximate NNLO predictions for ZZ production. The exact gluon-fusion loop-squared contribution to the ZZ process is also included. On top of that, we add to our merged sample the gluon-fusion ZZ+jet contributions from the gluon-gluon channel, which is formally of N^3LO and provides approximate results at NLO for the gluon-fusion mechanism. The predictions are obtained with the VBFNLO package and include the leptonic decays of the Z bosons with all off-shell and spin-correlation effects, as well as virtual photon contributions. We compare our predictions with existing results for the total inclusive cross section at NNLO and find a very good agreement. Then, we present results for differential distributions for two experimental setups, one used in searches for anomalous triple gauge boson couplings, the other in Higgs analyses in the four charged-lepton final state channel. We find that the approximate NNLO corrections are large, reaching up to 20% at high transverse momentum of the Z boson or the leading lepton, and are not covered by the NLO scale uncertainties. Distributions of the four-lepton invariant mass are, however, stable with respect to QCD corrections at this order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2595  
Permanent link to this record
 

 
Author Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N. url  doi
openurl 
  Title FIMP Dark Matter in Clockwork/Linear Dilaton extra-dimensions Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 061 - 29pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Large Extra Dimensions  
  Abstract (down) We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP's in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 10(9) GeV. We comment on the similarities of the results in both extra-dimensional models.  
  Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000639271100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4792  
Permanent link to this record
 

 
Author De Romeri, V.; Fernandez-Martinez, E.; Sorel, M. url  doi
openurl 
  Title Neutrino oscillations at DUNE with improved energy reconstruction Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 030 - 25pp  
  Keywords CP violation; Neutrino Physics  
  Abstract (down) We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to delta(CP), is better reconstructed. These effects lead to a significant improvement in the fraction of values of delta(CP) for which a 5 sigma discovery of leptonic CP-violation would be possible. The precision of the delta(CP) measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from 26 degrees to 18 degrees for a 300 MW.kt.yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.  
  Address [De Romeri, Valentina; Fernandez-Martinez, Enrique] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382887300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2807  
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Helo, J.C. url  doi
openurl 
  Title Lepton number violating phenomenology of d=7 neutrino mass models Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 009 - 24pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract (down) We study the phenomenology of d = 7 1-loop neutrino mass models. All models in this particular class require the existence of several new SU(2)(L) multiplets, both scalar and fermionic, and thus predict a rich phenomenology at the LHC. The observed neutrino masses and mixings can easily be fitted in these models. Interestingly, despite the smallness of the observed neutrino masses, some particular lepton number violating (LNV) final states can arise with observable branching ratios. These LNV final states consists of leptons and gauge bosons with high multiplicities, such as 4/ + 4W, 6/ + 2W etc. We study current constraints on these models from upper bounds on charged lepton flavour violating decays, existing lepton number conserving searches at the LHC and discuss possible future LNV searches.  
  Address [Cepedello, R.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000419113900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3443  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva