toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Romero-Lopez, F.; Rusetsky, A.; Schlage, N.; Urbach, C. url  doi
openurl 
  Title Relativistic N-particle energy shift in finite volume Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 060 - 52pp  
  Keywords Lattice QCD; Lattice Quantum Field Theory  
  Abstract (up) We present a general method for deriving the energy shift of an interacting system of N spinless particles in a finite volume. To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes. Relativistic corrections are explicitly included up to a given order in the 1/L expansion. We apply this method to obtain the ground state of N particles, and the first excited state of two and three particles to order L-6 in terms of the threshold parameters of the two- and three-particle relativistic scattering amplitudes. We use these expressions to analyze the N-particle ground state energy shift in the complex phi (4) theory.  
  Address [Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: fernando.romero@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000617678000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4711  
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Generalizing the relativistic quantization condition to include all three-pion isospin channels Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 047 - 49pp  
  Keywords Lattice QCD; Scattering Amplitudes  
  Abstract (up) We present a generalization of the relativistic, finite-volume, three-particle quantization condition for non-identical pions in isosymmetric QCD. The resulting formalism allows one to use discrete finite-volume energies, determined using lattice QCD, to constrain scattering amplitudes for all possible values of two- and three-pion isospin. As for the case of identical pions considered previously, the result splits into two steps: the first defines a non-perturbative function with roots equal to the allowed energies, E-n(L), in a given cubic volume with side-length L. This function depends on an intermediate three-body quantity, denoted K-df;3, which can thus be constrained from lattice QCD input. The second step is a set of integral equations relating K-df,K-3 to the physical scattering amplitude, M-3. Both of the key relations, E-n(L) <-> K-df,K-3 and K-df,K-3 <-> M-3, are shown to be block-diagonal in the basis of definite three-pion isospin, I-pi pi pi, so that one in fact recovers four independent relations, corresponding to I-pi pi pi = 0; 1; 2; 3. We also provide the generalized threshold expansion of K-df,K-3 for all channels, as well as parameterizations for all three-pion resonances present for I-pi pi pi = 0 and I-pi pi pi = 1. As an example of the utility of the generalized formalism, we present a toy implementation of the quantization condition for I-pi pi pi = 0, focusing on the quantum numbers of the omega and h(1) resonances.  
  Address [Hansen, Maxwell T.] Univ Geneva, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: maxwell.hansen@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551981200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4474  
Permanent link to this record
 

 
Author Carrasco, N.; Ciuchini, M.; Dimopoulos, P.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Lubicz, V.; Michael, C.; Picca, E.; Rossi, G.C.; Sanfilippo, F.; Shindler, A.; Silvestrini, L.; Simula, S.; Tarantino, C. url  doi
openurl 
  Title B-physics from N-f=2 tmQCD: the Standard Model and beyond Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 016 - 52pp  
  Keywords Lattice QCD; B-Physics; Beyond Standard Model; Quark Masses and SM Parameters  
  Abstract (up) We present a lattice QCD computation of the b-quark mass, the B and B-s decay constants, the B-mixing bag parameters for the full four-fermion operator basis as well as determinations for xi and f(Bq) root B-i((q)) extrapolated to the continuum limit and to the physical pion mass. We used N-f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m(b)(m(b), (MS) over bar) = 4.29(12) GeV, f(Bs) = 228(8) MeV, f(B) = 189(8) MeV and f(Bs)/f(B) = 1.206(24). Moreover with our results for the bag-parameters we find xi = 1.225(31), B-1((s))/B-1((d)) = 1.01(2), f (Bd) root(B) over cap ((d))(1) = 216(10) MeV and integral Bs root(B) over cap ((s))(1) = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B-(s) -(B) over bar ((s)) mixing.  
  Address [Carrasco, N.; Gimenez, V.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: nuria.carrasco@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347824200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2086  
Permanent link to this record
 

 
Author Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R. doi  openurl
  Title Implementing the three-particle quantization condition including higher partial waves Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 106 - 56pp  
  Keywords Lattice QCD; Lattice Quantum Field Theory; Scattering Amplitudes  
  Abstract (up) We present an implementation of the relativistic three-particle quantization condition including both s- and d-wave two-particle channels. For this, we develop a systematic expansion of the three-particle K matrix, K-df,K-3, about threshold, which is the generalization of the effective range expansion of the two-particle K matrix, K-2. Relativistic invariance plays an important role in this expansion. We find that d-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle d-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle d-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3 pi(+) system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of K-df,K-3. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.  
  Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Dept Phys, 3910 15th Ave NE, Seattle, WA 98195 USA, Email: blanton1@uw.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462325900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3953  
Permanent link to this record
 

 
Author Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J. url  doi
openurl 
  Title Infrared facets of the three-gluon vertex Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 818 Issue Pages 136352 - 7pp  
  Keywords QCD; Three-gluon vertex; Lattice QCD; Schwinger-Dyson equations  
  Abstract (up) We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The emerging picture of the underlying dynamics is thoroughly corroborated by the lattice results, both qualitatively as well as quantitatively.  
  Address [Aguilar, A. C.; Ferreira, M. N.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: jose.rodriguez@dfaie.uhu.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000662629500036 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4865  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva