toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aguiar, P.; Rafecas, M.; Ortuño, J.E.; Kontaxakis, G.; Santos, A.; Pavia, J.; Rosetti, M. doi  openurl
  Title Geometrical and Monte Carlo projectors in 3D PET reconstruction Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 11 Pages 5691-5702  
  Keywords 3D PET; iterative reconstruction; list-mode reconstruction; ray-tracing techniques; Monte Carlo simulation; system response matrix  
  Abstract (up) Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer (S-RT) and the orthogonal distance-based ray-tracer (OD-RT), based on computing the orthogonal distance from the center of image voxel to the line-of-response. A comparison of these geometrical projectors was performed using different point spread function (PSF) models. The Monte Carlo-based method under consideration involves an extensive model of the system response matrix based on Monte Carlo simulations and is computed off-line and stored on disk. Methods: Comparisons were performed using simulated and experimental data of the commercial small animal PET scanner rPET. Results: The results demonstrate that the orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions yield better images in terms of contrast and spatial resolution than those obtained after using the conventional method and the multiray-based S-RT. Furthermore, the Monte Carlo-based method yields slight improvements in terms of contrast and spatial resolution with respect to these geometrical projectors. Conclusions: The orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions represent satisfactory alternatives to factorizing the system matrix or to the conventional on-the-fly ray-tracing methods for list-mode reconstruction, where an extensive modeling based on Monte Carlo simulations is unfeasible.  
  Address [Aguiar, Pablo] Univ Santiago de Compostela, Dept Fis Particulas, Complexo Hosp Univ Santiago de Compostela, Fdn IDICHUS IDIS, Santiago De Compostela, Spain, Email: pablo.aguiar.fernandez@sergas.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283747600015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 338  
Permanent link to this record
 

 
Author Oliver, J.F.; Rafecas, M. doi  openurl
  Title Improving the singles rate method for modeling accidental coincidences in high-resolution PET Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 55 Issue 22 Pages 6951-6971  
  Keywords  
  Abstract (up) Random coincidences ('randoms') are one of the main sources of image degradation in PET imaging. In order to correct for this effect, an accurate method to estimate the contribution of random events is necessary. This aspect becomes especially relevant for high-resolution PET scanners where the highest image quality is sought and accurate quantitative analysis is undertaken. One common approach to estimate randoms is the so-called singles rate method (SR) widely used because of its good statistical properties. SR is based on the measurement of the singles rate in each detector element. However, recent studies suggest that SR systematically overestimates the correct random rate. This overestimation can be particularly marked for low energy thresholds, below 250 keV used in some applications and could entail a significant image degradation. In this work, we investigate the performance of SR as a function of the activity, geometry of the source and energy acceptance window used. We also investigate the performance of an alternative method, which we call 'singles trues' (ST) that improves SR by properly modeling the presence of true coincidences in the sample. Nevertheless, in any real data acquisition the knowledge of which singles are members of a true coincidence is lost. Therefore, we propose an iterative method, STi, that provides an estimation based on ST but which only requires the knowledge of measurable quantities: prompts and singles. Due to inter-crystal scatter, for wide energy windows ST only partially corrects SR overestimations. While SR deviations are in the range 86-300% (depending on the source geometry), the ST deviations are systematically smaller and contained in the range 4-60%. STi fails to reproduce the ST results, although for not too high activities the deviation with respect to ST is only a few percent. For conventional energy windows, i.e. those without inter-crystal scatter, the ST method corrects the SR overestimations, and deviations from the true random rate are of the order of 1% or less. In addition, in the case of conventional energy window STi results reproduce ST results and therefore the former can be used to obtain the true random rate.  
  Address [Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, E-46003 Valencia, Spain, Email: josep.f.oliver@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283789700025 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 344  
Permanent link to this record
 

 
Author Oliver, J.F.; Rafecas, M. doi  openurl
  Title Modelling Random Coincidences in Positron Emission Tomography by Using Singles and Prompts: A Comparison Study Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal PLoS ONE  
  Volume 11 Issue 9 Pages e0162096 - 22pp  
  Keywords  
  Abstract (up) Random coincidences degrade the image in Positron Emission Tomography, PET. To compensate for their degradation effects, the rate of random coincidences should be estimated. Under certain circumstances, current estimation methods fail to provide accurate results. We propose a novel method, “Singles-Prompts” (SP), that includes the information conveyed by prompt coincidences and models the pile-up. The SP method has the same structure than the well-known “Singles Rate” (SR) approach. Hence, SP can straightforwardly replace SR. In this work, the SP method has been extensively assessed and compared to two conventional methods, SR and the delayed window (DW) method, in a preclinical PET scenario using Monte-Carlo simulations. SP offers accurate estimates for the randoms rates, while SR and DW tend to overestimate the rates (similar to 10%, and 5%, respectively). With pile-up, the SP method is more robust than SR (but less than DW). At the image level, the contrast is overestimated in SR-corrected images, + 16%, while SP produces the correct value. Spill-over is slightly reduced using SP instead of SR. The DW images values are similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms were not compensated for. In particular, the contrast is reduced, -16%. In general, the better estimations of SP translate into better image quality.  
  Address [Oliver, Josep F.; Rafecas, M.] Inst Fis Corpuscular IFIC UV CSIC, Valencia, Spain, Email: josep.f.oliver@uv.es  
  Corporate Author Thesis  
  Publisher Public Library Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000383255200040 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2825  
Permanent link to this record
 

 
Author Bolle, E.; Casella, C.; Chesi, E.; De Leo, R.; Dissertori, G.; Fanti, V.; Gillam, J.E.; Heller, M.; Joram, C.; Lustermann, W.; Nappi, E.; Oliver, J.F.; Pauss, F.; Rafecas, M.; Rudge, A.; Ruotsalainen, U.; Schinzel, D.; Schneider, T.; Seguinot, J.; Solevi, P.; Stapnes, S.; Tuna, U.; Weilhammer, P. doi  openurl
  Title AX-PET: A novel PET concept with G-APD readout Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 695 Issue Pages 129-134  
  Keywords PET; Axial geometry; Geiger-mode Avalanche Photo Diodes (G-APD); SiPM  
  Abstract (up) The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like Na-22 sources. Their performance in terms of energy (Renew approximate to 11.8% (FWMH) at 511 key) and spatial resolution was assessed (sigma(axial) approximate to 0.65 mm), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans.  
  Address [Heller, M.; Joram, C.; Schneider, T.; Seguinot, J.] CERN, PH Dept, CH-1211 Geneva, Switzerland, Email: Matthieu.Heller@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311469900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1236  
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Casella, C.; Heller, M.; Joram, C.; Rafecas, M. doi  openurl
  Title Sensitivity recovery for the AX-PET prototype using inter-crystal scattering events Type Journal Article
  Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 59 Issue 15 Pages 4065-4083  
  Keywords positron emission tomography (PET); inter-crystal scattering; sensitivity  
  Abstract (up) The development of novel detection devices and systems such as the AX-positron emission tomography (PET) demonstrator often introduce or increase the measurement of atypical coincidence events such as inter-crystal scattering (ICS). In more standard systems, ICS events often go undetected and the small measured fraction may be ignored. As the measured quantity of such events in the data increases, so too does the importance of considering them during image reconstruction. Generally, treatment of ICS events will attempt to determine which of the possible candidate lines of response (LoRs) correctly determine the annihilation photon trajectory. However, methods of assessment often have low success rates or are computationally demanding. In this investigation alternative approaches are considered. Experimental data was taken using the AX-PET prototype and a NEMA phantom. Three methods of ICS treatment were assessed-each of which considered all possible candidate LoRs during image reconstruction. Maximum likelihood expectation maximization was used in conjunction with both standard (line-like) and novel (V-like in this investigation) detection responses modeled within the system matrix. The investigation assumed that no information other than interaction locations was available to distinguish between candidates, yet the methods assessed all provided means by which such information could be included. In all cases it was shown that the signal to noise ratio is increased using ICS events. However, only one method, which used full modeling of the ICS response in the system matrix-the V-like model-provided enhancement in all figures of merit assessed in this investigation. Finally, the optimal method of ICS incorporation was demonstrated using data from two small animals measured using the AX-PET demonstrator.  
  Address [Gillam, John E.; Solevi, Paola; Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: john.gillam@sydney.edu.au  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340056800006 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1879  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva