toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Can interacting dark energy solve the H-0 tension? Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 4 Pages 043503 - 11pp  
  Keywords  
  Abstract (up) The answer is yes. We indeed find that interacting dark energy can alleviate the current tension on the value of the Hubble constant H-0 between the cosmic microwave background anisotropies constraints obtained from the Planck satellite and the recent direct measurements reported by Riess et al. 2016. The combination of these two data sets points toward a nonzero dark matter-dark energy coupling. at more than two standard deviations, with xi = -0.26(-0.12)(+0.16) at 95% C.L., i.e. with a moderate evidence for interacting dark energy with an odds ratio of 6:1 respect to a non interacting cosmological constant. However the H-0 tension is better solved when the equation of state of the interacting dark energy component is allowed to freely vary, with a phantomlike equation of state w = -1.185 +/- 0.064 (at 68% C.L.), ruling out the pure cosmological constant case, w = -1, again at more than two standard deviations. When Planck data are combined with external datasets, as BAO, JLA Supernovae Ia luminosity distances, cosmic shear or lensing data, we find perfect consistency with the cosmological constant scenario and no compelling evidence for a dark matter-dark energy coupling.  
  Address [Di Valentino, Eleonora] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France, Email: eleonora.di_valentino@iap.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427529900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3517  
Permanent link to this record
 

 
Author Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. url  doi
openurl 
  Title The galaxy power spectrum take on spatial curvature and cosmic concordance Type Journal Article
  Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 33 Issue Pages 100851 - 17pp  
  Keywords Cosmological parameters; Spatial curvature; Cosmological tensions  
  Abstract (up) The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704383100022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4984  
Permanent link to this record
 

 
Author Giare, W.; Renzi, F.; Mena, O.; Di Valentino, E.; Melchiorri, A. url  doi
openurl 
  Title Is the Harrison-Zel'dovich spectrum coming back? ACT preference for n(s) similar to 1 and its discordance with Planck Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 521 Issue 2 Pages 2911-2918  
  Keywords cosmological parameters; inflation; cosmology: observations; cosmology: theory  
  Abstract (up) The Data Release 4 of the Atacama Cosmology Telescope (ACT) shows an agreement with an Harrison-Zel'dovich primordial spectrum (n(s) = 1.009 +/- 0.015), introducing a tension with a significance of 99.3 per cent Confidence Level (CL) with the results from the Planck satellite. The discrepancy on the value of the scalar spectral index is neither alleviated with the addition of large scale structure information nor with the low multipole polarization data. We discuss possible avenues to alleviate the tension relying on either neglecting polarization measurements from ACT or in extending different sectors of the theory.  
  Address [Giare, William] Ctr Nazl INFN Studi Avanzati, Galileo Galileo Inst Theoret Phys, Largo Enr Fermi 2, I-50125 Florence, Italy, Email: william.giare@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000957248500013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5510  
Permanent link to this record
 

 
Author Forconi, M.; Ruchika; Melchiorri, A.; Mena, O.; Menci, N. url  doi
openurl 
  Title Do the early galaxies observed by JWST disagree with Planck's CMB polarization measurements? Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 012 - 16pp  
  Keywords cosmological parameters from CMBR; high redshift galaxies; CMBR polarisation; reionization  
  Abstract (up) The recent observations from the James Webb Space Telescope have led to a surprising discovery of a significant density of massive galaxies with masses of M >= 10(10.5)M(circle dot) at redshifts of approximately z similar to 10. This corresponds to a stellar mass density of roughly rho* similar to 10(6)M(circle dot) Mpc(-3). Despite making conservative assumptions regarding galaxy formation, this finding may not be compatible with the standard.CDM cosmology that is favored by observations of CMB Anisotropies from the Planck satellite. In this paper, we confirm the substantial discrepancy with Planck's results within the.CDM framework. Assuming a value of is an element of = 0.2 for the efficiency of converting baryons into stars, we indeed find that the.CDM model is excluded at more than 99.7% confidence level (C.L.). An even more significant exclusion is found for is an element of similar to 0.1, while a better agreement, but still in tension at more than 95%, is obtained for is an element of = 0.32. This tension, as already discussed in the literature, could arise either from systematics in the JWST measurements or from new physics. Here, as a last-ditch effort, we point out that disregarding the large angular scale polarization obtained by Planck, which allows for significantly larger values of the matter clustering parameter sigma(8), could lead to better agreement between Planck and JWST within the.CDM framework. Assuming.CDM and no systematics in the current JWST results, this implies either an unknown systematic error in current large angular scale CMB polarization measurements or an unidentified physical mechanism that could lower the expected amount of CMB polarization produced during the epoch of reionization. Interestingly, the model compatible with Planck temperature-only data and JWST observation also favors a higher Hubble constant H-0 = 69.0 +/- 1.1 km/s/Mpc at 68% C.L., in better agreement with observations based on SN-Ia luminosity distances.  
  Address [Forconi, Matteo; Ruchika; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001142721200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5903  
Permanent link to this record
 

 
Author Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.Q.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. url  doi
openurl 
  Title In the realm of the Hubble tension – a review of solutions Type Journal Article
  Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 38 Issue 15 Pages 153001 - 110pp  
  Keywords cosmological parameters; cosmology; dark energy; Hubble constant  
  Abstract (up) The simplest ΛCDM model provides a good fit to a large span of cosmological data but harbors large areas of phenomenology and ignorance. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the 4 sigma to 6 sigma disagreement between predictions of the Hubble constant, H (0), made by the early time probes in concert with the 'vanilla' ΛCDM cosmological model, and a number of late time, model-independent determinations of H (0) from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demands a hypothesis with enough rigor to explain multiple observations-whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors. A thorough review of the problem including a discussion of recent Hubble constant estimates and a summary of the proposed theoretical solutions is presented here. We include more than 1000 references, indicating that the interest in this area has grown considerably just during the last few years. We classify the many proposals to resolve the tension in these categories: early dark energy, late dark energy, dark energy models with 6 degrees of freedom and their extensions, models with extra relativistic degrees of freedom, models with extra interactions, unified cosmologies, modified gravity, inflationary models, modified recombination history, physics of the critical phenomena, and alternative proposals. Some are formally successful, improving the fit to the data in light of their additional degrees of freedom, restoring agreement within 1-2 sigma between Planck 2018, using the cosmic microwave background power spectra data, baryon acoustic oscillations, Pantheon SN data, and R20, the latest SH0ES Team Riess, et al (2021 Astrophys. J. 908 L6) measurement of the Hubble constant (H (0) = 73.2 +/- 1.3 km s(-1) Mpc(-1) at 68% confidence level). However, there are many more unsuccessful models which leave the discrepancy well above the 3 sigma disagreement level. In many cases, reduced tension comes not simply from a change in the value of H (0) but also due to an increase in its uncertainty due to degeneracy with additional physics, complicating the picture and pointing to the need for additional probes. While no specific proposal makes a strong case for being highly likely or far better than all others, solutions involving early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity provide the best options until a better alternative comes along.  
  Address [Di Valentino, Eleonora] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000672148200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4931  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva