|   | 
Details
   web
Records
Author Sandner, S.; Hernandez, P.; Lopez-Pavon, J.; Rius, N.
Title Predicting the baryon asymmetry with degenerate right-handed neutrinos Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 153 - 37pp
Keywords Baryo-and Leptogenesis; Sterile or Heavy Neutrinos; Early Universe Particle Physics
Abstract (down) We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.
Address [Sandner, S.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001111979900002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5869
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.; Valkenburg, W.
Title CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe Type Journal Article
Year 2023 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 283 Issue Pages 108586 - 13pp
Keywords Early universe; Real-time lattice simulations; Gauge -invariant lattice techniques
Abstract (down) This paper describes CosmoGattice, a modern package for lattice simulations of the dynamics of interacting scalar and gauge fields in an expanding universe. CosmoGattice incorporates a series of features that makes it very versatile and powerful: i) it is written in C++ fully exploiting the object oriented programming paradigm, with a modular structure and a clear separation between the physics and the technical details, ii) it is MPI-based and uses a discrete Fourier transform parallelized in multiple spatial dimensions, which makes it specially appropriate for probing scenarios with well -separated scales, running very high resolution simulations, or simply very long ones, iii) it introduces its own symbolic language, defining field variables and operations over them, so that one can introduce differential equations and operators in a manner as close as possible to the continuum, iv) it includes a library of numerical algorithms, ranging from O(delta t(2)) to O(delta t(10)) methods, suitable for simulating global and gauge theories in an expanding grid, including the case of 'self-consistent' expansion sourced by the fields themselves. Relevant observables are provided for each algorithm (e.g. energy densities, field spectra, lattice snapshots) and we note that, remarkably, all our algorithms for gauge theories (Abelian or non-Abelian) always respect the Gauss constraint to machine precision. Program summary Program Title:: CosmoGattice CPC Library link to program files: https://doi .org /10 .17632 /44vr5xssc6 .1 Developer's repository link: http://github .com /cosmolattice /cosmolattice Licensing provisions: MIT Programming language: C++, MPI Nature of problem: The phenomenology of high energy physics in the early universe is typically characterized by non-linear dynamics, which cannot be captured accurately with analytical techniques. In order to fully understand the non-linearities developed in a given scenario, one needs to carry out lattice simulations. A number of public packages for lattice simulations have appeared over the years, but most of them are only capable of simulating scalar fields. However, realistic models of particle physics do contain other kind of field species, such as (Abelian or non-Abelian) gauge fields, whose non-linear dynamics can also play a relevant role in the early universe. Tensor modes representing gravitational waves are also naturally expected in many scenarios. Solution method: CosmoGattice represents a modern code for lattice simulations of scalar-gauge field theories in an expanding universe. It allows for the simulation of the evolution of interacting (singlet) scalar fields, charged scalar fields under U(1) and/or SU(2) gauge groups, and the corresponding associated Abelian and/or non-Abelian gauge fields. From version 1.1 onward, CosmoGattice also allows to simulate the production of gravitational waves. Simulations can be done either in a flat space-time background, or in a homogeneous and isotropic (spatially flat) expanding FLRW background. CosmoGattice provides symplectic integrators, with accuracy ranging from O (delta t(2)) up to O(delta t(10)), to simuate the non-linear dynamics of the appropriate fields in comoving three-dimensional lattices. The code is parallelized with MPI, and uses a discrete Fourier Transform parallelized in multiple spatial dimensions, which makes it a very powerful code for probing physical problems with well-separated scales. Moreover, the code has been designed as a `platform' to implement any system of dynamical equations suitable for discretization on a lattice.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: f.torrenti@unibas.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000899506700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5451
Permanent link to this record
 

 
Author PTOLEMY Collaboration (Betti, M.G. et al); Gariazzo, S.; Pastor, S.
Title Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 047 - 31pp
Keywords cosmological neutrinos; neutrino detectors; particle physics – cosmology connection; physics of the early universe
Abstract (down) The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.
Address [Betti, M. G.; Cavoto, G.; Mancini-Terracciano, C.; Mariani, C.; Polosa, A. D.; Rago, I] Univ Roma La Sapienza, Rome, Italy, Email: pabferde@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000478735300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4097
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T.
Title A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology Type Journal Article
Year 2023 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 38 Issue 25 Pages 2350124 - 32pp
Keywords Framed standard model; phase transition; early Universe; cosmology
Abstract (down) The framed standard model (FSM), constructed to explain the empirical mass and mixing patterns (including CP phases) of quarks and leptons, in which it has done quite well, gives otherwise the same result as the standard model (SM) in almost all areas in particle physics where the SM has been successfully applied, except for a few specified deviations such as the W mass and the g-2 of muons, that is, just where experiment is showing departures from what SM predicts. It predicts further the existence of a hidden sector of particles some of which may function as dark matter. In this paper, we first note that the above results involve, surprisingly, the FSM undergoing a vacuum transition (VTR1) at a scale of around 17MeV, where the vacuum expectation values of the colour framons (framed vectors promoted into fields) which are all nonzero above that scale acquire some vanishing components below it. This implies that the metric pertaining to these vanishing components would vanish also. Important consequences should then ensue, but these occur mostly in the unknown hidden sector where empirical confirmation is hard at present to come by, but they give small reflections in the standard sector, some of which may have already been seen. However, one notes that if, going off at a tangent, one imagines colour to be embedded, Kaluza-Klein (KK) fashion, into a higher-dimensional space-time, then this VTR1 would cause 2 of the compactified dimensions to collapse. This might mean then that when the universe cooled to the corresponding temperature of 1011 K when it was about 10-3 s old, this VTR1 collapse would cause the three spatial dimensions of the universe to expand to compensate. The resultant expansion is estimated, using FSM parameters previously determined from particle physics, to be capable, when extrapolated backwards in time, of bringing the present universe back inside the then horizon, solving thus formally the horizon problem. Besides, VTR1 being a global phenomenon in the FSM, it would switch on and off automatically and simultaneously over all space, thus requiring seemingly no additional strategy for a graceful exit. However, this scenario has not been checked for consistency with other properties of the universe and is to be taken thus not as a candidate solution of the horizon problem but only as an observation from particle physics which might be of interest to cosmologists and experts in the early universe. For particle physicists also, it might serve as an indicator for how relevant this VTR1 can be, even if the KK assumption is not made.
Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:001099552500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5803
Permanent link to this record
 

 
Author Barenboim, G.; Blinov, N.; Stebbins, A.
Title Smallest remnants of early matter domination Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 026 - 50pp
Keywords cosmology of theories beyond the SM; physics of the early universe; cosmological perturbation theory
Abstract (down) The evolution of the universe prior to Big Bang Nucleosynthesis could have gone through a phase of early matter domination which enhanced the growth of small-scale dark matter structure. If this period was long enough, self-gravitating objects formed prior to reheating. We study the evolution of these dense early halos through reheating. At the end of early matter domination, the early halos undergo rapid expansion and eventually eject their matter. We find that this process washes out structure on scales much larger than naively expected from the size of the original halos. We compute the density profiles of the early halo remnants and use them to construct late-time power spectra that include these non-linear effects. We evolve the resulting power spectrum to estimate the properties of microhalos that would form after matter-radiation equality. Surprisingly, cosmologies with a short period of early matter domination lead to an earlier onset of microhalo formation compared to those with a long period. In either case, dark matter structure formation begins much earlier than in the standard cosmology, with most dark matter bound in microhalos in the late universe.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000734341100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5060
Permanent link to this record