|   | 
Details
   web
Records
Author Barenboim, G.; Hirn, J.; Sanz, V.
Title Symmetry meets AI Type Journal Article
Year 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 11 Issue 1 Pages 014 - 11pp
Keywords
Abstract (down) We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics templates, where no information on symmetry is provided. We use the output from the last hidden layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task, and show that information on symmetry had indeed been identified by the original NN without guidance. As an interdisciplinary application of this procedure, we identify the presence and level of symmetry in artistic paintings from different styles such as those of Picasso, Pollock and Van Gogh.
Address [Barenboim, Gabriela; Hirn, Johannes; Sanz, Veronica] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000680039500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4920
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title Spontaneous baryogenesis in spiral inflation Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 6 Pages 456 - 11pp
Keywords
Abstract (down) We examined the possibility of spontaneous baryogenesis driven by the inflaton in the scenario of spiral inflation, and found the parametric dependence of the late-time baryon number asymmetry. As a result, it is shown that, depending on the effective coupling of baryon/lepton number violating operators, it is possible to obtain the right amount of asymmetry even in the presence of a matter-domination era as long as such era is relatively short. In a part of the parameter space, the required expansion rate during inflation is close to the current upper-bound, and hence can be probed in the near future experiments.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000469517700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4027
Permanent link to this record
 

 
Author Barenboim, G.; Hill, C.T.
Title Sterile neutrinos, black hole vacuum and holographic principle Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 2 Pages 150 - 9pp
Keywords
Abstract (down) We construct an effective field theory (EFT) model that describes matter field interactions with Schwarzschild mini-black-holes (SBH's), treated as a scalar field, B0(x). Fermion interactions with SBH's require a complex spurion field, theta ij, which we interpret as the EFT description of “holographic information,” which is correlated with the SBH as a composite system. We consider Hawking's virtual black hole vacuum (VBH) as a Higgs phase, B0=V. Integrating sterile neutrino loops, the information field theta ij is promoted to a dynamical field, necessarily developing a tachyonic instability and acquiring a VEV of order the Planck scale. For N sterile neutrinos this breaks the vacuum to SU(N)xU(1)/SO(N) with N degenerate Majorana masses, and <mml:mfrac>12</mml:mfrac>N(N+1) Nambu-Goldstone neutrino-Majorons. The model suggests many scalars fields, corresponding to all fermion bilinears, may exist bound nonperturbatively by gravity.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000620366700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4736
Permanent link to this record
 

 
Author Norena, J.; Verde, L.; Barenboim, G.; Bosch, C.
Title Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 019 - 16pp
Keywords redshift surveys; cosmological parameters from LSS; inflation
Abstract (down) We consider whether the non-Gaussian scale-dependent halo bias can be used not only to constrain the local form of non-Gaussianity but also to distinguish among different shapes. In particular, we ask whether it can constrain the behavior of the primordial three-point function in the squeezed limit where one of the momenta is much smaller than the other two. This is potentially interesting since the observation of a three-point function with a squeezed limit that does not go like the local nor equilateral templates would be a signal of non-trivial dynamics during inflation. To this end we use the quasi-single field inflation model of Chen & Wang [1, 2] as a representative two-parameter model, where one parameter governs the amplitude of non-Gaussianity and the other the shape. We also perform a model-independent analysis by parametrizing the scale-dependent bias as a power-law on large scales, where the power is to be constrained from observations. We find that proposed large-scale structure surveys (with characteristics similar to the dark energy task force stage IV surveys) have the potential to distinguish among the squeezed limit behavior of different bispectrum shapes for a wide range of fiducial model parameters. Thus the halo bias can help discriminate between different models of inflation.
Address [Norena, Jorge; Verde, Licia] Univ Barcelona ICC UB IEEC, Inst Ciencias Cosmos, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000308800700020 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1189
Permanent link to this record
 

 
Author Alicki, R.; Barenboim, G.; Jenkins, A.
Title Quantum thermodynamics of de Sitter space Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 12 Pages 123530 - 13pp
Keywords
Abstract (down) We consider the local physics of an open quantum system embedded in an expanding three-dimensional space x, evolving in cosmological time t, weakly coupled to a massless quantum field. We derive the corresponding Markovian master equation for the system's nonunitary evolution and show that, for a de Sitter space with Hubble parameter h 1/4 const, the background fields act as a physical heat bath with temperature TdS 1/4 h/2z. The energy density of this bath obeys the Stefan-Boltzmann law pdS proportional to h4. We comment on how these results clarify the thermodynamics of de Sitter space and support previous arguments for its instability in the infrared. The cosmological implications are considered in an accompanying Letter.
Address [Alicki, Robert; Jenkins, Alejandro] Univ Gdansk, Int Ctr Theory Quantum Technol ICTQT, PL-80308 Gdansk, Poland, Email: robert.alicki@ug.edu.pl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001145885800017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5918
Permanent link to this record