Perkowski, J. et al, Babiano-Suarez, V., Balibrea Correa, J., Domingo-Pardo, C., Ladarescu, I., & Lerendegui-Marco, J. (2024). Multi-section fission ionization chamber for measurement of 239Pu(n, γ) reaction in fission tagging method. Nucl. Instrum. Methods Phys. Res. A, 1067, 169649–8pp.
Abstract: The Pu-239(n, gamma) reaction cross section is very important for operation of both thermal and fast reactors, when loaded with MOX fuels. According to the NEA/OECD High Priority Request List the precision of cross section data for this reaction should be improved. The cross section of (n, f) reaction is much higher compared to (n, gamma) for this isotope. In such conditions the fission tagging technique could be applied to identify the fission background. In the past, this technique was successfully used for capture measurements at the nTOF facility at CERN. The multi-section fission ionization chamber was constructed and used in the combination with Total Absorption Calorimeter (TAC) for detecting gamma rays for the precise measurement of Pu-239(n, gamma) reaction cross section at the nTOF facility.
|
n_TOF Collaboration(Wright, T. et al), Domingo-Pardo, C., Giubrone, G., Tain, J. L., & Tarifeño-Saldivia, A. (2017). Measurement of the U-238(n,gamma) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility. Phys. Rev. C, 96(6), 064601–11pp.
Abstract: The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) x 10(-4) atoms/barn areal density U-238 sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.
|
n_TOF Collaboration(Belloni, F. et al), Domingo-Pardo, C., & Tain, J. L. (2011). Measurement of the neutron-induced fission cross-section of Am-243 relative to U-235 from 0.5 to 20 MeV. Eur. Phys. J. A, 47(12), 160–8pp.
Abstract: The ratio of the neutron-induced fission cross-sections of Am-243 and U-235 was measured in the energy range from 0.5 to 20 MeV with uncertainties of approximate to 4%. The experiment was performed at the CERN n_TOF facility using a fast ionization chamber. With the good counting statistics that could be achieved thanks to the high instantaneous flux and the low backgrounds, the present results are useful for resolving discrepancies in previous data sets and are important for future reactors with improved fuel burn-up.
|
Perez-Vidal, R. M. et al, Gadea, A., Jurado, M., Domingo-Pardo, C., & Huyuk, T. (2022). Evidence of Partial Seniority Conservation in the pi g9/2 Shell for the N=50 Isotones. Phys. Rev. Lett., 129(11), 112501–7pp.
Abstract: The reduced transition probabilities for the 4+1 -2+1 and 2+1 -0+1 transitions in 92Mo and 94Ru and for the 4+1 -2+1 and 6+1 -4+1 transitions in 90Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f5=2, p3=2, p1=2, and g9=2 proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N = 50 g9=2 orbital to be understood. The conclusion is that seniority is largely conserved in the first 71g9=2 orbital.
|
n_TOF Collaboration(Sosnin, N. V. et al), Babiano-Suarez, V., Caballero-Ontanaya, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2024). Measurement of the 78Se(n, γ)79Se cross section up to 600 keV at the n_TOF facility at CERN. Phys. Rev. C, 110(6), 065805–12pp.
Abstract: The Se-78(n, gamma)Se-79 cross section has a high impact on the abundances of Se-78 produced during the slow neutron capture process (s process) in massive stars. A measurement of the Se-78 radiative neutron capture cross section has been performed at the Neutron Time-of-Flight facility at CERN using a set of liquid scintillation detectors that have been optimized for a low sensitivity to neutrons. We present resonance capture kernels up to 70 keV and cross section from 70 to 600 keV. Maxwellian-averaged cross section (MACS) values were calculated for stellar temperatures between kT = 5 and 100 keV, with uncertainties between 4.6% and 5.8%. The new MACS values result in substantial decreases of 20-30% of Se-78 abundances produced in the s process in massive stars and AGB stars. Massive stars are now predicted to produce subsolar Se-78/Se-76 ratios, which is expected since Se-76 is an s-only isotope, while solar Se-78 abundances have also contributions from other nucleosynthesis processes.
|