|   | 
Details
   web
Records
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 10 Pages 903 - 19pp
Keywords
Abstract (down) Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
Address [Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000866503200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5386
Permanent link to this record
 

 
Author Boucenna, M.S.; Morisi, S.; Valle, J.W.F.
Title The Low-Scale Approach to Neutrino Masses Type Journal Article
Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2014 Issue Pages 831598 - 15pp
Keywords
Abstract (down) In this short review we revisit the broad landscape of low-scale SU(3)(C) circle times SU(2)(L) circle times U(1)(Y) models of neutrino mass generation, with view on their phenomenological potential. This includes signatures associated to direct neutrino mass messenger production at the LHC, as well as messenger-induced lepton flavor violation processes. We also briefly comment on the presence of WIMP cold dark matter candidates.
Address [Boucenna, Sofiane M.; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular Parque Cient IFIC, AHEP Grp, Valencia 46980, Spain, Email: stefano.morisi@gmail.com
Corporate Author Thesis
Publisher Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000340751800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1897
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Valle, J.W.F.
Title Seesaw Dirac neutrino mass through dimension-six operators Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 3 Pages 035009 - 18pp
Keywords
Abstract (down) In this paper, a follow-up of [S. C. Chulia, R. Srivastava, and J. W. F. Valle, Phys. Lett. B 781, 122 (2018)], we describe the many pathways to generate Dirac neutrino mass through dimension-six operators. By using only the standard model Higgs doublet in the external legs, one gets a unique operator 1/Lambda(2) (L) over bar (Phi) over bar (Phi) over bar Phi nu(R). In contrast, the presence of new scalars implies new possible field contractions, which greatly increase the number of possibilities. Here, we study in detail the simplest ones, involving SU(2)(L) singlets, doublets, and triplets. The extra symmetries needed to ensure the Dirac nature of neutrinos can also be responsible for stabilizing dark matter.
Address [Chulia, Salvador Centelles; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna C Catedrat Jose Beltran,2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000441013200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3686
Permanent link to this record
 

 
Author Cañas, B.C.; Miranda, O.G.; Parada, A.; Tortola, M.; Valle, J.W.F.
Title Updating neutrino magnetic moment constraints Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 753 Issue Pages 191-198
Keywords
Abstract (down) In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda(i) and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10(-11) mu(B) at 90% C.L. This corresponds to the individual transition magnetic moment constraints: vertical bar Lambda(1)vertical bar <= 5.6 x10(-11)mu(B), vertical bar Lambda(2)vertical bar <= 4.0 x10(-11)mu(B), and vertical bar Lambda(3)vertical bar <= 3.1 x10(-11)mu B(90% C. L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Address [Canas, B. C.; Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000368783600029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2551
Permanent link to this record
 

 
Author Bonilla, C.; Morisi, S.; Peinado, E.; Valle, J.W.F.
Title Relating quarks and leptons with the T-7 flavour group Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 742 Issue Pages 99-106
Keywords
Abstract (down) In this letter we present a model for quarks and leptons based on T-7 as flavour symmetry, predicting a canonical mass relation between charged leptons and down-type quarks proposed earlier. Neutrino masses are generated through a Type-I seesaw mechanism, with predicted correlations between the atmospheric mixing angle and neutrino masses. Compatibility with oscillation results leads to lower bounds for the lightest neutrino mass as well as for the neutrinoless double beta decay rates, even for normal neutrino mass hierarchy.
Address [Bonilla, Cesar; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000350555900016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2155
Permanent link to this record