|   | 
Details
   web
Records
Author de Putter, R.; Mena, O.; Giusarma, E.; Ho, S.; Cuesta, A.; Seo, H.J.; Ross, A.J.; White, M.; Bizyaev, D.; Brewington, H.; Kirkby, D.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.K.; Percival, W.J.; Ross, N.P.; Schneider, D.P.; Shelden, A.; Simmons, A.; Snedden, S.
Title New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies Type Journal Article
Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 761 Issue 1 Pages 12 - 12pp
Keywords cosmological parameters; cosmology: observations; large-scale structure of universe
Abstract (up) We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call “CMASS,” with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small (similar to 1 sigma-1.5 sigma) bias in Omega(DM)h(2). For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e. g., Sigma m(nu) < 0.38 eV (95% CL) for WMAP+HST+CMASS (l(max) = 200). We also study the dependence of the neutrino bound on the multipole range (l(max) = 150 versus l(max) = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature Omega(K), while a second companion paper presents a measurement of the scale of baryon acoustic oscillations from the same data set. All three works are based on the catalog by Ross et al.
Address [de Putter, Roland] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000311748800012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1262
Permanent link to this record
 

 
Author Salvatelli, V.; Marchini, A.; Lopez-Honorez, L.; Mena, O.
Title New constraints on coupled dark energy from the Planck satellite experiment Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 2 Pages 023531 - 9pp
Keywords
Abstract (up) We present new constraints on coupled dark energy from the recent measurements of the cosmic microwave background anisotropies from the Planck satellite mission. We found that a coupled dark energy model is fully compatible with the Planck measurements, deriving a weak bound on the dark matter-dark energy coupling parameter xi = -0.49(-0.31)(+0.19) at 68% C.L. Moreover if Planck data are fitted to a coupled dark energy scenario, the constraint on the Hubble constant is relaxed to H-0 = 72.1(-2.3)(+3.2) km/s/Mpc, solving the tension with the Hubble Space Telescope (HST) value. We show that a combined PLANCK + HST analysis provides significant evidence for coupled dark energy finding a nonzero value for the coupling parameter xi, with -0.90 < xi < -0.22 at 95% C.L. We also consider the combined constraints from the Planck data plus the baryon acoustic oscillation measurements of the 6dF Galaxy Survey, the Sloan Digital Sky Survey and the Baron Oscillation Spectroscopic Survey.
Address [Salvatelli, Valentina; Marchini, Andrea] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000322216900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1524
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Mena, O.
Title Model marginalized constraints on neutrino properties from cosmology Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 4 Pages 043540 - 9pp
Keywords
Abstract (up) We present robust, model-marginalized limits on both the total neutrino mass (E m1,) and abundances (Neff) to minimize the role of parametrizations, priors and models when extracting neutrino properties from cosmology. The cosmological observations we consider are cosmic microwave background temperature fluctuation and polarization measurements, supernovae Ia luminosity distances, baryon acoustic oscillation observations and determinations of the growth rate parameter from the Data Release 16 of the Sloan Digital Sky Survey IV. The degenerate neutrino mass spectrum (which implies the prior sigma m(1), > 0) is weakly or moderately preferred over the normal and inverted hierarchy possibilities, which imply the priors sigma m(1), > 0.06 and sigma m(1), > 0.1 eV respectively. Concerning the underlying cosmological model, the ACDM minimal scenario is almost always strongly preferred over the possible extensions explored here. The most constraining 95% CL bound on the total neutrino mass in the ACDM + sigma m(1), picture is sigma m(1), < 0.087 eV. The parameter N-eff is restricted to 3.08 +/- 0.17 (68% CL) in the ACDM + Neff model. These limits barely change when considering the ACDM + sigma m(1), + Neff scenario. Given the robustness and the strong constraining power of the cosmological measurements employed here, the model -marginalized posteriors obtained considering a large spectra of nonminimal cosmologies are very close to the previous bounds, obtained within the ACDM framework in the degenerate neutrino mass spectrum. Future cosmological measurements may improve the current Bayesian evidence favoring the degenerate neutrino mass spectra, challenging therefore the consistency between cosmological neutrino mass bounds and oscillation neutrino measurements, and potentially suggesting a more complicated cosmological model and/or neutrino sector.
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000862804700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5375
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giusarma, E.; Mena, O.
Title Robustness of cosmological axion mass limits Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 12 Pages 123505 - 12pp
Keywords
Abstract (up) We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a “piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of sigma(8) and Omega(m) from the 2013 Planck cluster catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a similar to 1 eV axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.
Address [Di Valentino, Eleonora] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355623400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2253
Permanent link to this record
 

 
Author Giusarma, E.; Di Valentino, E.; Lattanzi, M.; Melchiorri, A.; Mena, O.
Title Relic neutrinos, thermal axions, and cosmology in early 2014 Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 4 Pages 043507 - 17pp
Keywords
Abstract (up) We present up-to-date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise baryon acoustic oscillation measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three-active-neutrino scenario, we find Sigma m(nu) < 0.22 eV at 95% C.L. from the combination of cosmic microwave background (CMB), baryon acoustic oscillation, and Hubble Space Telescope measurements of the Hubble constant. A nonzero value for the sum of the three active neutrino masses of similar to 0.3 eV is significantly favored at more than three standard deviations when adding the constraints on s 8 and Om from the Planck cluster catalog on galaxy number counts. This preference for nonzero thermal relic masses disappears almost completely in both the thermal axion and massive sterile neutrino schemes. Extra light species contribute to the effective number of relativistic degrees of freedom, parametrized via N-eff. We found that when the recent detection of B mode polarization from the BICEP2 experiment is considered, an analysis of the combined CMB data in the framework of LCDM + r models gives N-eff = 3.90 +/- 0.42, suggesting the presence of an extra relativistic relic at more than 95% C.L. from CMB-only data.
Address [Giusarma, Elena; Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000347985100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2075
Permanent link to this record