|   | 
Details
   web
Records
Author Cepedello, R.; Fonseca, R.M.; Hirsch, M.
Title Systematic classification of three-loop realizations of the Weinberg operator Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 197 - 34pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We study systematically the decomposition of the Weinberg operator at three-loop order. There are more than four thousand connected topologies. However, the vast majority of these are infinite corrections to lower order neutrino mass diagrams and only a very small percentage yields models for which the three-loop diagrams are the leading order contribution to the neutrino mass matrix. We identify 73 topologies that can lead to genuine three-loop models with fermions and scalars, i.e. models for which lower order diagrams are automatically absent without the need to invoke additional symmetries. The 73 genuine topologies can be divided into two sub-classes: normal genuine ones (44 cases) and special genuine topologies (29 cases). The latter are a special class of topologies, which can lead to genuine diagrams only for very specific choices of fields. The genuine topologies generate 374 diagrams in the weak basis, which can be reduced to only 30 distinct diagrams in the mass eigenstate basis. We also discuss how all the mass eigenstate diagrams can be described in terms of only five master integrals. We present some concrete models and for two of them we give numerical estimates for the typical size of neutrino masses they generate. Our results can be readily applied to construct other d = 5 neutrino mass models with three loops.
Address [Cepedello, Ricardo; Hirsch, Martin] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000449260800013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3792
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R.; Tolos, L.
Title Xi(c) and Xi(b) excited states within a SU(6)(lsf) x HQSS model Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 1 Pages 22 - 12pp
Keywords
Abstract (down) We study odd parity J = 1/2 and J = 3/2 Xi(c) resonances using a unitarized coupled-channel framework based on a SU(6)(lsf) xHQSS-extended Weinberg-Tomozawa baryon-meson interaction, while paying a special attention to the renormalization procedure. We predict a large molecular Lambda(c)(K) over bar component for the Xi(c) (2790) with a dominant 0(-) light-degree-of-freedom spin configuration. We discuss the differences between the 3/2(-) Lambda(c)(2625) and Xi(c)(2815) states, and conclude that they cannot be SU(3) siblings, whereas we predict the existence of other Xi(c)-states, one of them related to the two-pole structure of the Lambda(c)(2595). It is of particular interest a pair of J = 1/2 and J = 3/2 poles, which form a HQSS doublet and that we tentatively assign to the Xi(c)(2930) and Xi(c)(2970), respectively. Within this picture, the Xi(c)(2930) would be part of a SU(3) sextet, containing either the Omega(c)(3090) or the Omega(c)(3119), and that would be completed by the Sigma(c)(2800). Moreover, we identify a J = 1/2 sextet with the Xi(b)(6227) state and the recently discovered Sigma(b)(6097). Assuming the equal spacing rule and to complete this multiplet, we predict the existence of a J = 1/2 Omega(b) odd parity state, with a mass of 6360 MeV and that should be seen in the Xi(b) (K) over bar channel.
Address [Nieves, J.; Pavao, R.] UV, CSIC, Inst Invest Paterna, Inst Fis Corpuscular,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: tolos@ice.csic.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000514590400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4295
Permanent link to this record
 

 
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V.
Title Deuteron structure in the deep inelastic regime Type Journal Article
Year 2017 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 53 Issue 6 Pages 118 - 5pp
Keywords
Abstract (down) We study nuclear effects in the deuteron in the deep inelastic regime using the newest available data. We put special emphasis on their Q(2) dependence. The study is carried out using a scheme which parameterizes, in a simple manner, these effects by changing the proton and neutron stucture functions in medium. The result of our analysis is compared with other recent proposals. We conclude that precise EMC ratios cannot be obtained without considering the nuclear effects in the deuteron.
Address [Garcia Canal, C. A.; Tarutina, T.] Univ Nacl La Plata, IFLP CONICET, CC 67, RA-1900 La Plata, Buenos Aires, Argentina, Email: ttarutina@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000402987800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3356
Permanent link to this record
 

 
Author Molina, R.; Geng, L.S.; Oset, E.
Title Comments on the dispersion relation method to vector-vector interaction Type Journal Article
Year 2019 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume Issue 10 Pages 103B05 - 16pp
Keywords
Abstract (down) We study in detail the method proposed recently to study the vector-vector interaction using the N/D method and dispersion relations, which concludes that, while, for J = 0, one finds bound states, in the case of J = 2, where the interaction is also attractive and much stronger, no bound state is found. In that work, approximations are done for N and D and a subtracted dispersion relation for D is used, with subtractions made up to a polynomial of second degree in s – s(th), matching the expression to 1 – VG at threshold. We study this in detail for the rho rho interaction and to see the convergence of the method we make an extra subtraction matching 1 – VG at threshold up to (s – s(th))(3). We show that the method cannot be used to extrapolate the results down to 1270 MeV where the f(2)(1270) resonance appears, due to the artificial singularity stemming from the “on-shell” factorization of the rho exchange potential. In addition, we explore the same method but folding this interaction with the mass distribution of the rho, and we show that the singularity disappears and the method allows one to extrapolate to low energies, where both the (s – s(th))(2) and (s – s(th))(3) expansions lead to a zero of Re D(s), at about the same energy where a realistic approach produces a bound state. Even then, the method generates a large Im D(s) that we discuss is unphysical.
Address [Molina, R.] Univ Complutense Madrid, Fac Fis, Dept Fis Teor 2, Plaza Ciencias 1, E-28040 Madrid, Spain, Email: ramolinape@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000493500800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4190
Permanent link to this record
 

 
Author Dev, A.; Machado, P.A.N.; Martinez-Mirave, P.
Title Signatures of ultralight dark matter in neutrino oscillation experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 094 - 23pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We study how neutrino oscillations could probe the existence of ultralight bosonic dark matter. Three distinct signatures on neutrino oscillations are identified, depending on the mass of the dark matter and the specific experimental setup. These are time modulation signals, oscillation probability distortions due to fast modulations, and fast varying matter effects. We provide all the necessary information to perform a bottom-up, model-independent experimental analysis to probe such scenarios. Using the future DUNE experiment as an example, we estimate its sensitivity to ultralight scalar dark matter. Our results could be easily used by any other oscillation experiment.
Address [Dev, Abhish] Univ Maryland, Maryland Ctr Fundamental Phys, Dept Phys, College Pk, MD 20742 USA, Email: adev@umd.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640855200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4794
Permanent link to this record