toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A. url  doi
openurl 
  Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 2 Pages 024201 - 45pp  
  Keywords LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter  
  Abstract (down) In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.  
  Address [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762056700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5151  
Permanent link to this record
 

 
Author Lineros, R.A.; Pereira dos Santos, F.A. url  doi
openurl 
  Title Inert scalar dark matter in an extra dimension inspired model Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 059 - 17pp  
  Keywords dark matter theory; extra dimensions; particle physics – cosmology connection  
  Abstract (down) In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of an real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.  
  Address [Lineros, R. A.; Pereira dos Santos, F. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: rlineros@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345990800060 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2042  
Permanent link to this record
 

 
Author Basilakos, S.; Mavromatos, N.E.; Mitsou, V.A.; Plionis, M. url  doi
openurl 
  Title Dynamics and constraints of the dissipative Liouville cosmology Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 36 Issue 1 Pages 7-17  
  Keywords Cosmology; Dark matter; Dark energy  
  Abstract (down) In this article we investigate the properties of the FLRW flat cosmological models in which the cosmic expansion of the Universe is affected by a dilaton dark energy (Liouville scenario). In particular, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent supernovae type la data (SNIa), the differential ages of passively evolving galaxies, and the baryonic acoustic oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS), we put tight constraints on the main cosmological parameters. Furthermore, we study the linear matter fluctuation field of the above Liouville cosmological models. In this framework, we compare the observed growth rate of clustering measured from the optical galaxies with those predicted by the current Liouville models. Performing various statistical tests we show that the Liouville cosmological model provides growth rates that match well with the observed growth rate. To further test the viability of the models under study, we use the Press-Schechter formalism to derive their expected redshift distribution of cluster-size halos that will be provided by future X-ray and Sunyaev-Zeldovich cluster surveys. We find that the Hubble flow differences between the Liouville and the LambdaCDM models provide a significantly different halo redshift distribution, suggesting that the models can be observationally distinguished.  
  Address [Mitsou, Vasiliki A.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: vasiliki.mitsou@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309787000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1188  
Permanent link to this record
 

 
Author Casas, J.A.; Gomez Vargas, G.A.; Moreno, J.M.; Quilis, J.; Ruiz de Austri, R. url  doi
openurl 
  Title Extended Higgs-portal dark matter and the Fermi-LAT Galactic Center Excess Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 031 - 16pp  
  Keywords dark matter theory; dark matter experiments  
  Abstract (down) In the present work, we show that the Galactic Center Excess (GCE) emission, as recently updated by the Fermi-LAT Collaboration, could be explained by a mixture of Fermi bubbles-like emission plus dark matter (DM) annihilation, in the context of a scalar-singlet Higgs portal scenario (SHP). In fact, the standard SHP, where the DM particle, S, only has renormalizable interactions with the Higgs, is non-operational due to strong constraints, especially from DM direct detection limits. Thus we consider the most economical extension, called ESHP (for extended SHP), which consists solely in the addition of a second (more massive) scalar singlet in the dark sector. The second scalar can be integrated-out, leaving a standard SHP plus a dimension-6 operator. Mainly, this model has only two relevant parameters (the DM mass and the coupling of the dim-6 operator). DM annihilation occurs mainly into two Higgs bosons, SS -> hh. We demonstrate that, despite its economy, the ESHP model provides an excellent fit to the GCE (with p-value similar to 0.6-0.7) for very reasonable values of the parameters, in particular, ms similar or equal to 130 GeV. This agreement of the DM candidate to the GCE properties does not clash with other observables and keep the S – particle relic density at the accepted value for the DM content in the universe.  
  Address [Casas, J. A.; Moreno, J. M.; Quilis, J.] Univ Autonoma Madrid, Inst Fis Teor, CSIC, E-28049 Madrid, Spain, Email: j.alberto.casas@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435710700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3626  
Permanent link to this record
 

 
Author Ahyoune, S. et al; Gimeno, B.; Reina-Valero, J. url  doi
openurl 
  Title A Proposal for a Low-Frequency Axion Search in the 1-2 μeV Range and Below with the BabyIAXO Magnet Type Journal Article
  Year 2023 Publication Annalen der Physik Abbreviated Journal Ann. Phys.  
  Volume 535 Issue 12 Pages 2300326 - 23pp  
  Keywords axions; dark matter; dark photons; haloscopes; IAXO  
  Abstract (down) In the near future BabyIAXO will be the most powerful axion helioscope, relying on a custom-made magnet of two bores of 70 cm diameter and 10 m long, with a total available magnetic volume of more than 7 m(3). In this document, it proposes and describe the implementation of low-frequency axion haloscope setups suitable for operation inside the BabyIAXO magnet. The RADES proposal has a potential sensitivity to the axion-photon coupling g(alpha gamma) down to values corresponding to the KSVZ model, in the (currently unexplored) mass range between 1 and 2 μeV, after a total effective exposure of 440 days. This mass range is covered by the use of four differently dimensioned 5-meter-long cavities, equipped with a tuning mechanism based on inner turning plates. A setup like the one proposed will also allow an exploration of the same mass range for hidden photons coupled to photons. An additional complementary apparatus is proposed using LC circuits and exploring the low energy range (approximate to 10(-4)-10(-1)mu eV). The setup includes a cryostat and cooling system to cool down the BabyIAXO bore down to about 5 K, as well as an appropriate low-noise signal amplification and detection chain.  
  Address [Ahyoune, Saiyd; Cuendis, Sergio Arguedas; Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, Barcelona 08028, Spain, Email: cogollos@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001095932700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5833  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva