toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caputo, A.; Esposito, A.; Polosa, A.D. url  doi
openurl 
  Title Sub-MeV dark matter and the Goldstone modes of superfluid helium Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 11 Pages 116007 - 6pp  
  Keywords  
  Abstract (down) We show how a relativistic effective field theory for the superfluid phase of 4 He can replace the standard methods used to compute the production rates of low-momentum excitations due to the interaction with an external probe. This is done by studying the scattering problem of a light dark matter particle in the superfluid and comparing to some existing results. We show that the rate of emission of two phonons, the Goldstone modes of the effective theory, gets strongly suppressed for sub-MeV dark matter particles due to a fine cancellation between two different tree-level diagrams in the limit of small exchanged momenta. This phenomenon is found to be a consequence of the particular choice of the potential felt by the dark matter particle in helium. The predicted rates can vary by orders of magnitude if this potential is changed. We prove that the dominant contribution to the total emission rate is provided by excitations in the phonon branch. Finally, we analyze the angular distributions for the emissions of one and two phonons and discuss how they can be used to measure the mass of the hypothetical dark matter particle hitting the helium target.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000501488800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4222  
Permanent link to this record
 

 
Author Brandao, P.C.S.; Song, J.; Abreu, L.M.; Oset, E. url  doi
openurl 
  Title B+ decay to K+ ηη with (ηη) from the D bar-D(3720) bound state Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 5 Pages 054004 - 6pp  
  Keywords  
  Abstract (down) We search for a B decay mode where one can find a peak for a DD bound state predicted in effective theories and in lattice QCD calculations, which has also been claimed from some reactions that show an accumulated strength in D D over bar production at threshold. We find a good candidate in the B+-> K+eta eta reaction, by looking at the eta eta mass distribution. The reaction proceeds via a first step in which one has the B+-> D*+ D-0 reaction followed by D*(+) (s) decay to (DK+)-K-0 and a posterior fusion of D-0 over bar D-0 to eta eta, implemented through a triangle diagram that allows the D-0 over bar D-0 to be virtual and to produce the bound state. The choice of eta eta to see the peak is based on results of calculations that find the eta eta among the light pseudoscalar channels with stronger coupling to the D D over bar bound state. We find a neat peak around the predicted mass of that state in the eta eta mass distribution, with an integrated branching ratio for B+-> K+ (D D, bound); (D D, bound) -> eta eta of the order of 1.5 x 10(-4), a large number for hadronic B decays, which should motivate its experimental search.  
  Address [Brandao, Pedro C. S.; Abreu, Luciano M.; Oset, E.] Univ Fed Bahia, Inst Fis, Campus Ondina, BR-40170115 Salvador, BA, Brazil, Email: pedro.brandao@ufba.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001085561600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5765  
Permanent link to this record
 

 
Author Barenboim, G.; Chen, J.Z.; Hannestad, S.; Oldengott, I.M.; Tram, T.; Wong, Y.Y.Y. url  doi
openurl 
  Title Invisible neutrino decay in precision cosmology Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 087 - 53pp  
  Keywords cosmological neutrinos; neutrino properties; CMBR theory; cosmological parameters from CMBR  
  Abstract (down) We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino nu(H) couples to a lighter one nu(l) and a massless scalar particle phi via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the firstorder inhomogeneous levels, for the phase space densities of nu(H), nu(l), and phi in the presence of the relevant decay and inverse decay processes. With this set of equations in hand, we perform a critical survey of recent works on cosmological invisible neutrino decay in both limits of decay while nu(H) is ultra-relativistic and non-relativistic. Our two main findings are: (i) in the non-relativistic limit, the effective equations of motion used to describe perturbations in the neutrino-scalar system in the existing literature formally violate momentum conservation and gauge invariance, and (ii) in the ultra-relativistic limit, exponential damping of the anisotropic stress does not occur at the commonly-used rate Gamma(T) = (1/tau(0))( m(nu H)/E-nu H)(3), but at a rate similar to (1/ tau(0))(m(nu H)/E-nu H)(5). Both results are model-independent. The impact of the former finding on the cosmology of invisible neutrino decay is likely small. The latter, however, implies a significant revision of the cosmological limit on the neutrino lifetime tau(0) from tau(old)(0) greater than or similar to 1.2 x 10(9) s (m(nu H)/50 meV)(3) to tau(0) greater than or similar to (4 x 10(5) -> 4 x 10(6)) s (m(nu H)/50 meV)(5).  
  Address [Barenboim, Gabriela; Oldengott, Isabel M.] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636717400082 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4782  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title Radiative decays in bottomonium beyond the long wavelength approximation Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 7 Pages 074001 - 13pp  
  Keywords  
  Abstract (down) We revisit the nonrelativistic quark model description of electromagnetic radiative decays in bottomonium. We show that even for the simplest spectroscopic quark model the calculated widths can be in good agreement with data once the experimental masses of bottomonium states and the photon energy are properly implemented in the calculation. For transitions involving the lower lying spectral states this implementation can be easily done via the long wavelength approximation. For transitions where this approximation does not apply we develop a new method of implementing the experimental energy dependencies.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000488508700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4164  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract (down) We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva