Xiao, C. W., Nieves, J., & Oset, E. (2019). Prediction of hidden charm strange molecular baryon states with heavy quark spin symmetry. Phys. Lett. B, 799, 135051–10pp.
Abstract: We have studied the meson-baryon S-wave interaction in the isoscalar hidden-charm strange sector with the coupled-channels, eta(c)Lambda, J/psi Lambda, (D) over bar Xi(c), (D) over bar (s)Lambda(c), (D) over bar Xi(c)', (D) over bar*Lambda(c), (D) over bar*Xi(c)', (D) over bar*Xi*(c) in J(p) = 1/2(-), J/psi Lambda, (D) over bar*Xi(c), (D) over bar (s)*Lambda(c), (D) over bar*Xi(c)', (D) over bar Xi(c)*, (D) over bar*Xi(c)* in 3/2(-) and (D) over bar*Xi(c)* in 5/2(-). We impose constraints of heavy quark spin symmetry in the interaction and obtain the non vanishing matrix elements from an extension of the local hidden gauge approach to the charm sector. The ultraviolet divergences are renormalized using the same meson-baryon-loops regulator previously employed in the non-strange hidden charm sector, where a good reproduction of the properties of the newly discovered pentaquark states is obtained. We obtain five states of 1/2(-), four of 3/2(-) and one of 5/2(-), which could be compared in the near future with forthcoming LHCb experiments. The 5/2(-), three of the 3/2(-) and another three of the 1/2(-) resonances are originated from isoscalar (D) over bar (()*())Xi(c)' and (D) over bar (()*()) Xi(c)* interactions. They should be located just few MeV below the corresponding thresholds (4446, 4513, 4588 and 4655 MeV), and would be SU(3)-siblings of the isospin 1/2 (D) over bar (()*())Sigma(()(c)*()) quasi-bound states previously found, and that provided a robust theoretical description of the P-c(4440), P-c(4457) and P-c(4312) LHCb exotic states. The another two 1/2(-) and 3/2(-) states obtained in this work are result of the (D) over bar (()*())Xi(c)- D-s(()*()) Lambda(c) coupled-channels isoscalar interaction, are significantly broader than the others, with widths of the order of 15 MeV, being (D) over bar (()(s)*())Lambda(c) the dominant decay channel.
|
Feijoo, A., Valcarce Cadenas, V., & Magas, V. K. (2023). The Xi(1620) and Xi(1690) molecular states from S =-2 meson-baryon interaction up to next-to-leading order. Phys. Lett. B, 841, 137927–6pp.
Abstract: We have studied the meson-baryon interaction in the neutral S = -2 sector using an extended Unitarized Chiral Perturbation Theory, which takes into account not only the leading Weinberg-Tomozawa term (as all the previous studies in S = -2 sector), but also the Born terms and next-to-leading order contribution. Based on the SU(3) symmetry of the chiral Lagrangian we took most of the model parameters from the BCN model [1], where these were fitted to a large amount of experimental data in the neutral S = -1 sector. We have shown that our approach is able to generate dynamically both Xi(1620) and Xi(1690) states in very reasonable agreement with the data, and can naturally explain the puzzle with the decay branching ratios of Xi(1690). Our results clearly illustrate the reliability of chiral models implementing unitarization in coupled channels and the importance of considering Born and NLO contributions for precise calculations.
|
Ramos, A., & Oset, E. (2013). The role of vector-baryon channels and resonances in the gamma p -> K-0 Sigma(+) and gamma n -> K-0 Sigma(0) reactions near the K*Lambda threshold. Phys. Lett. B, 727(1-3), 287–292.
Abstract: We have studied the gamma p -> K-0 Sigma(+) reaction in the energy region around the K*Lambda and K*Sigma thresholds, where the CBELSA/TAPS cross section shows a sudden drop and the differential cross section experiences a transition from a forward-peaked distribution to a flat one. Our coupled-channel model incorporates the dynamics of the vector meson-baryon interaction which is obtained from the hidden gauge formalism. We find that the cross section in this energy region results from a delicate interference between amplitudes having K*Lambda and K*Sigma intermediate states. The sharp downfall is dictated by the presence of a nearby N* resonance produced by our model, a feature that we have employed to predict its properties. We also show results for the complementary gamma n -> K-0 Sigma(0) reaction, the measurement of which would test the mechanism proposed in this work.
|
Montesinos, V., Ikeno, N., Oset, E., Albaladejo, M., Nieves, J., & Tolos, L. (2025). On the determination of the D meson width in the nuclear medium with the transparency ratio. Phys. Lett. B, 860, 139172–6pp.
Abstract: We have studied the feasibility of the experimental determination of the width of a D meson in a nuclear medium by using the method of the nuclear transparency. The cross section for inclusive production of a D+ in different nuclei is evaluated, taking care of the D+ absorption in the nucleus, or equivalently, the survival probability of the D+ in its way out of the nucleus from the point of production. We use present values of the in medium width of D mesons and calculate ratios of the cross sections for different nuclei to the 12 C nucleus as reference. We find ratios of the order of 0.6 for heavy nuclei, a large deviation from unity, which indicates that the method proposed is adequate to measure this relevant magnitude, so far only known theoretically.
|
Xie, J. J., Liang, W. H., & Oset, E. (2018). Hidden charm pentaquark and Lambda(1405) in the Lambda(0)(b) -> eta K-c(-) p(pi Sigma) reaction. Phys. Lett. B, 777, 447–452.
Abstract: We have performed a study of the Lambda(0)(b) -> eta K-c(-) p and Lambda(0)(b) -> eta(c)pi Sigma reactions based on the dominant Cabibbo favored weak decay mechanism. We show that the K- p produced only couples to Lambda* states, not Sigma* and that the pi Sigma state is only generated from final state interaction of (K) over barN and eta Lambda channels which are produced in a primary stage. This guarantees that the pi Sigma state is generated in isospin I=0 and we see that the invariant mass produces a clean signal for the Lambda(1405) of higher mass at 1420 MeV. We also study the eta(c)p final state interaction, which is driven by the excitation of a hidden charm resonance predicted before. We relate the strength of the different invariant mass distributions and find similar strengths that should be clearly visible in an ongoing LHCb experiment. In particular we predict that a clean peak should be seen for a hidden charm resonance that couples to the eta(c)p channel in the invariant eta(c)p mass distribution.
|