|   | 
Details
   web
Records
Author Calle Cordon, A.; Pavon Valderrama, M.; Ruiz Arriola, E.
Title Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization Type Journal Article
Year 2012 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 85 Issue 2 Pages 024002 - 13pp
Keywords
Abstract (down) We explore the interplay between renormalization, charge independence and charge symmetry breaking (CIB and CSB) in S-wave nucleon-nucleon scattering. The renormalizability requirement generates universality functions, that is, correlations between the low-energy scattering observables in the neutron-neutron, neutron-proton, and proton-proton systems. The universality functions only depend on the (known) form of the nucleon-nucleon potential at long distances and, in particular, they do not require any assumptions about short-range CIB and CSB effects. In addition, the inclusion of Coulomb effects is trivial for the particular case of proton-proton scattering, allowing us to relate strong and Coulomb scattering observables. Within this approach, and using a one-boson-exchange potential, the previous correlations are shown to be phenomenologically satisfied without the need to introduce further parameters.
Address [Cordon, A. Calle] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA, Email: cordon@jlab.org
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000300569200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 914
Permanent link to this record
 

 
Author Nieves, J.; Pavon Valderrama, M.
Title Heavy quark spin symmetry partners of the X(3872) Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 5 Pages 056004 - 18pp
Keywords
Abstract (down) We explore the consequences of heavy quark spin symmetry for the charmed meson-antimeson system in a contact-range (or pionless) effective field theory. As a trivial consequence, we theorize the existence of a heavy quark spin symmetry partner of the X(3872), with J(PC) = 2(++), which we call X(4012) in reference to its predicted mass. If we additionally assume that the X(3915) is a 0(++) heavy spin symmetry partner of the X(3872), we end up predicting a total of six D-(*())(D) over bar (()*()) molecular states. We also discuss the error induced by higher order effects such as finite heavy quark mass corrections, pion exchanges and coupled channels, allowing us to estimate the expected theoretical uncertainties in the position of these new states.
Address [Nieves, J.; Pavon Valderrama, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, E-46071 Valencia, Spain, Email: m.pavon.valderrama@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308869400013 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1162
Permanent link to this record
 

 
Author Albertus, C.; Hernandez, E.; Nieves, J.
Title Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 and spin-3/2 doubly heavy cb baryons Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 9 Pages 094035 - 21pp
Keywords
Abstract (down) We evaluate exclusive semileptonic decays of ground-state spin-1/2 and spin-3/2 doubly heavy cb baryons driven by a c --> s, d transition at the quark level. We check our results for the form factors against heavy quark spin symmetry constraints obtained in the limit of very large heavy quark masses and near zero recoil. Based on those constraints we make model-independent, though approximate, predictions for ratios of decay widths.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000304652600002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1043
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A.
Title Improved limits on B-0 decays to invisible final states and to nu nubar gamma Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 5 Pages 051105 - 8pp
Keywords
Abstract (down) We establish improved upper limits on branching fractions for B-0 decays to final states where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 x 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance by the BABAR experiment at the PEP-II e(+)e(-) storage ring at the SLAC National Accelerator Laboratory, we establish upper limits at the 90% confidence level of 2.4 x 10(-5) for the branching fraction of B-0 -> invisible and 1.7 x 10(-5) for the branching fraction of B-0 -> invisible + gamma.
Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000309241900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1170
Permanent link to this record
 

 
Author Pavon Valderrama, M.
Title Power counting and perturbative one pion exchange in heavy meson molecules Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 11 Pages 114037 - 21pp
Keywords
Abstract (down) We discuss the possible power counting schemes that can be applied in the effective field theory description of heavy meson molecules, such as the X(3872) or the recently discovered Z(b)(10610) and Z(b)(10650) states. We argue that the effect of coupled channels is suppressed by at least two orders in the effective field theory expansion, meaning that they can be safely ignored at lowest order. The role of the one pion exchange potential between the heavy mesons, and, in particular, the tensor force, is also analyzed. By using techniques developed in atomic physics for handling power-law singular potentials, which have been also successfully employed in nuclear physics, we determine the range of center-of-mass momenta for which the tensor piece of the one pion exchange potential is perturbative. In this momentum range, the one pion exchange potential can be considered a subleading order correction, leaving at lowest order a very simple effective field theory consisting only of contact-range interactions.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, E-46071 Valencia, Spain, Email: m.pavon.valderrama@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000305560900006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1065
Permanent link to this record