toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The positioning system of the ANTARES Neutrino Telescope Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages T08002 - 20pp  
  Keywords Timing detectors; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Detector alignment and calibration methods (lasers, sources, particle-beams); Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases)  
  Abstract (up) The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.  
  Address [Anton, G.; Eberl, T.; Enzenhoefer, A.; Folger, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Lahmann, R.; Meli, A.; Motz, H.; Neff, M.; Richardt, C.; Richter, R.; Roensch, K.; Schoeck, F.; Seitz, T.; Shanidze, R.; Spies, A.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: juergen.hoessl@physik.uni-erlangen.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308869800043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1176  
Permanent link to this record
 

 
Author ANTARES Collaboration (Ageron, M. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The ANTARES telescope neutrino alert system Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 35 Issue 8 Pages 530-536  
  Keywords ANTARES; Neutrino astronomy; Transient sources; Optical follow-up  
  Abstract (up) The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.  
  Address [Ageron, M.; Al Samarai, I.; Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Costantini, H.; Coyle, P.; Curtil, C.; Ernenwein, J-P.; Escoffier, S.; Galata, S.; Halladjian, G.; Hallewell, G.; Payre, P.; Picot-Clemente, N.; Riviere, C.; Vecchi, M.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: vecchi@cppm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301312000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 933  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 36 Issue 1 Pages 204-210  
  Keywords ANTARES; Neutrino astronomy; Fermi LAT transient sources; Time-dependent search; Blazars  
  Abstract (up) The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.  
  Address [Al Samarai, I.; Aubert, J-J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J-P.; Escoffier, S.; Galata, S.; Halladjian, G.; Hallewell, G.; Payre, P.; Picot-Clemente, N.; Riviere, C.; Vallee, C.; Vecchi, M.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: dornic@in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309787000024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1190  
Permanent link to this record
 

 
Author CALICE Collaboration (White, A. et al); Irles, A. url  doi
openurl 
  Title Design, construction and commissioning of a technological prototype of a highly granular SiPM-on-tile scintillator-steel hadronic calorimeter Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 11 Pages P11018 - 39pp  
  Keywords Calorimeters; Detector alignment and calibration methods (lasers, sources, par ticle- beams); Detector design and construction technologies and materials  
  Abstract (up) The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of 72 x 72 cm2 and a tile size of 3 x 3 cm2. With 38 active layers, the prototype has nearly 22, 000 readout channels, and its total thickness amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented.  
  Address [White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001127235400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5874  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Evidence of 200 TeV Photons from HAWC J1825-134 Type Journal Article
  Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 907 Issue 2 Pages L30 - 9pp  
  Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Gamma-ray observatories  
  Abstract (up) The Earth is bombarded by ultrarelativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10(15) eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV gamma-rays from decaying pi(0), produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cerenkov (HAWC) observatory of the gamma-ray source, HAWC J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons cm(-3). While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: sabrina.casanova@ifj.edu.pl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612623100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4703  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva