toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van Beekveld, M.; Caron, S.; Ruiz de Austri, R. url  doi
openurl 
  Title The current status of fine-tuning in supersymmetry Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 147 - 41pp  
  Keywords Supersymmetry Phenomenology  
  Abstract (up) In this paper, we minimize and compare two different fine-tuning measures in four high-scale supersymmetric models that are embedded in the MSSM. In addition, we determine the impact of current and future dark matter direct detection and collider experiments on the fine-tuning. We then compare the low-scale electroweak measure with the high-scale Barbieri-Giudice measure. We find that they reduce to the same value when the higgsino parameter drives the degree of fine-tuning. We also find spectra where the high-scale measure turns out to be lower than the low-scale measure. Depending on the high-scale model and fine-tuning definition, we find a minimal fine-tuning of 3-38 (corresponding to O(10-1)%) for the low-scale measure, and 63-571 (corresponding to O(1-0.1)%) for the high-scale measure. We stress that it is too early to conclude on the fate of supersymmetry, based only on the fine-tuning paradigm.  
  Address [van Beekveld, Melissa; Caron, Sascha] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000512011100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4275  
Permanent link to this record
 

 
Author Llanes Jurado, J.; Rodrigo, G.; Torres Bobadilla, W.J. url  doi
openurl 
  Title From Jacobi off-shell currents to integral relations Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 122 - 22pp  
  Keywords NLO Computations; QCD Phenomenology  
  Abstract (up) In this paper, we study off-shell currents built from the Jacobi identity of the kinematic numerators of gg -> X with X = ss, q (q) over bar, gg. We find that these currents can be schematically written in terms of three-point interaction Feynman rules. This representation allows for a straightforward understanding of the Colour-Kinematics duality as well as for the construction of the building blocks for the generation of higher-multiplicity tree-level and multi-loop numerators. We also provide one-loop integral relations through the Loop-Tree duality formalism with potential applications and advantages for the computation of relevant physical processes at the Large Hadron Collider. We illustrate these integral relations with the explicit examples of QCD one-loop numerators of gg -> ss.  
  Address [Llanes Jurado, Jose; Rodrigo, German; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: jollaju@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000418560700004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3431  
Permanent link to this record
 

 
Author Alvarez, M.; Cantero, J.; Czakon, M.; Llorente, J.; Mitov, A.; Poncelet, R. url  doi
openurl 
  Title NNLO QCD corrections to event shapes at the LHC Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 129 - 24pp  
  Keywords Higher-Order Perturbative Calculations; Specific QCD Phenomenology  
  Abstract (up) In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.  
  Address [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: manuel.alvarez.estevez@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000992064600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5560  
Permanent link to this record
 

 
Author Esteves, J.N.; Romao, J.C.; Hirsch, M.; Porod, W.; Staub, F.; Vicente, A. url  doi
openurl 
  Title Dark matter and LHC phenomenology in a left-right supersymmetric model Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 095 - 33pp  
  Keywords Supersymmetry Phenomenology  
  Abstract (up) Left-right symmetric extensions of the Minimal Supersymmetric Standard Model can explain neutrino data and have potentially interesting phenomenology beyond that found in minimal SUSY seesaw models. Here we study a SUSY model in which the left-right symmetry is broken by triplets at a high scale, but significantly below the GUT scale. Sparticle spectra in this model differ from the usual constrained MSSM expectations and these changes affect the relic abundance of the lightest neutralino. We discuss changes for the standard stau (and stop) co-annihilation, the Higgs funnel and the focus point regions. The model has potentially large lepton flavour violation in both, left and right, scalar leptons and thus allows, in principle, also for flavoured co-annihilation. We also discuss lepton flavour signals due to violating decays of the second lightest neutralino at the LHC, which can be as large as 20 fb(-1) at root s = 14 TeV.  
  Address [Esteves, J. N.; Romao, J. C.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Valencia 46071, Spain, Email: joaomest@cftp.ist.utl.pt  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300183300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 943  
Permanent link to this record
 

 
Author Ghoshal, A.; Gouttenoire, Y.; Heurtier, L.; Simakachorn, P. url  doi
openurl 
  Title Primordial black hole archaeology with gravitational waves from cosmic strings Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 196 - 43pp  
  Keywords Cosmology of Theories BSM; Early Universe Particle Physics; Phase Transitions in the Early Universe; Specific BSM Phenomenology  
  Abstract (up) Light primordial black holes (PBHs) with masses smaller than 10(9) g (10(-24) M-circle dot) evaporate before the onset of Big-Bang nucleosynthesis, rendering their detection rather challenging. If efficiently produced, they may have dominated the universe energy density. We study how such an early matter-dominated era can be probed successfully using gravitational waves (GW) emitted by local and global cosmic strings. While previous studies showed that a matter era generates a single-step suppression of the GW spectrum, we instead find a double-step suppression for local-string GW whose spectral shape provides information on the duration of the matter era. The presence of the two steps in the GW spectrum originates from GW being produced through two events separated in time: loop formation and loop decay, taking place either before or after the matter era. The second step – called the knee – is a novel feature which is universal to any early matter-dominated era and is not only specific to PBHs. Detecting GWs from cosmic strings with LISA, ET, or BBO would set constraints on PBHs with masses between 10(6) and 10(9) g for local strings with tension G μ= 10(-11), and PBHs masses between 10(4) and 10(9) g for global strings with symmetry-breaking scale eta = 10(15) GeV. Effects from the spin of PBHs are discussed.  
  Address [Ghoshal, Anish] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland, Email: anish.ghoshal@fuw.edu.pl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001188227600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5994  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva