toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carcamo Hernandez, A.E.; Hati, C.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Scotogenic neutrino masses with gauged matter parity and gauge coupling unification Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 034 - 25pp  
  Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics  
  Abstract (up) Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group SU(3)(c) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N), whose spontaneous breaking leaves a residual conserved matter parity, M-P, stabilizing the DM particle candidates of the model. The key role is played by Majorana SU(3) (L)-octet leptons, allowing the successful gauge coupling unification and a one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a plethora of new particles at the less than or similar to O(10) TeV scale, hence accessible to future collider and low-energy experiments.  
  Address [Carcamo Hernandez, A. E.] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000766168700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5162  
Permanent link to this record
 

 
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Menendez, J. url  doi
openurl 
  Title Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 030 - 22pp  
  Keywords Neutrino Physics; Effective Field Theories  
  Abstract (up) Coherent Elastic neutrino-Nucleus Scattering (CE nu NS), a process recently measured for the first time at ORNL's Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CE nu NS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at the COHERENT experiment.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, E-46980 Valencia, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561296500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4502  
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 063 - 26pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract (up) CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.  
  Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000449817300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3801  
Permanent link to this record
 

 
Author Farzan, Y.; Tortola, M. url  doi
openurl 
  Title Neutrino oscillations and non-standard Interactions Type Journal Article
  Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 6 Issue Pages 10 - 34pp  
  Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics  
  Abstract (up) Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.  
  Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Research Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426198100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3502  
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title CPT and CP, an entangled couple Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 155 - 12pp  
  Keywords CP violation; Neutrino Physics; Beyond Standard Model  
  Abstract (up) Even though it is undoubtedly very appealing to interpret the latest T2K results as evidence of CP violation, this claim assumes CPT conservation in the neutrino sector to an extent that has not been tested yet. As we will show, T2K results are not robust against a CPT-violating explanation. On the contrary, a CPT-violating CP-conserving scenario is in perfect agreement with current neutrino oscillation data. Therefore, to elucidate whether T2K results imply CP or CPT violation is of utter importance. We show that, even after combining with data from NO nu A and from reactor experiments, no claims about CP violation can be made. Finally, we update the bounds on CPT violation in the neutrino sector.  
  Address [Barenboim, Gabriela; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555932400005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4492  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva