toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Beaulieu, L.; Ballester, F.; Granero, D.; Tedgren, A.C.; Haworth, A.; Lowenstein, J.R.; Ma, Y.Z.; Mourtada, F.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.L.; Thomson, R.M.; Verhaegen, F.; Fonseca, G.; Vijande, J. doi  openurl
  Title AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy Type Journal Article
  Year 2023 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 50 Issue 8 Pages e946–e960  
  Keywords brachytherapy; commissioning; dose calculation; model-based dose calculation; Monte Carlo; TG-186  
  Abstract (down) The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-192-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.  
  Address [Beaulieu, Luc; Ma, Yunzhi] CHU Quebec Univ Laval, Serv Phys Med & Radioprotect, Quebec City, PQ, Canada, Email: beaulieu@phy.ulaval.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026540300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5579  
Permanent link to this record
 

 
Author AGATA Collaboration (Soderstrom, P.A. et al); Gadea, A. doi  openurl
  Title Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 638 Issue 1 Pages 96-109  
  Keywords gamma-ray tracking; AGATA; Monte Carlo simulations; HPGe detectors; Fusion-evaporation reactions  
  Abstract (down) The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected gamma-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted gamma-ray. The gamma-ray tracking was used to determine the full energy of the gamma-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FVVHM of the interaction position resolution for the gamma-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a (30)5i beam at 64 MeV on a thin C-12 target. Pulse-shape analysis of the digitized detector waveforms and gamma-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the gamma-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FVVHM of the interaction position resolution varies roughly linearly as a function of gamma-ray energy from 8.5 mm at 250 key to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the gamma-ray energy range from 1.5 to 4 MeV.  
  Address [Soderstrom, P. -A.; Nyberg, J.; Al-Adili, A.; Atac, A.; Veyssiere, C.] Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden, Email: P-A.Soderstrom@physics.uu.se  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290082600015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 619  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 256 Issue Pages 107477 - 15pp  
  Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE  
  Abstract (down) The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564482200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4520  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title Transit dose comparisons for Co-60 and Ir-192 HDR sources Type Journal Article
  Year 2016 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 36 Issue 4 Pages 858-864  
  Keywords Monte Carlo; dosimetry; HDR brachytherapy; transit dose  
  Abstract (down) The goal of this study is to evaluate the ambient dose due to the transit of high dose rate (HDR) Co-60 sources along a transfer tube as compared to Ir-192 ones in a realistic clinical scenario. This goal is accomplished by evaluating air-kerma differences with Monte Carlo calculations using PENELOPE2011. Scatter from both the afterloader and the patient was not taken into account. Two sources, mHDR-v2 and Flexisource Co-60, (Elekta Brachytherapy, Veenendaal, the Netherlands) have been considered. These sources were simulated within a standard transfer tube located in an infinite air phantom. The movement of the source was included by displacing their positions along the connecting tube from z = – 75 cm to z = + 75 cm and combining them. Since modern afterloaders like Flexitron (Elekta) or Saginova (BEBIG GmbH) are able to use equally 192Ir and 60Co sources, it was assumed that both sources are displaced with equal speed. Typical HDR source activity content values were provided by the manufacturer. 2D distributions were obtained with type-A uncertainties (k = 2) less than 0.01%. From those, the air-kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding typical activities. It was found that it varies slowly with distance (less than 10% variation at 75 cm) but strongly in time due to the shorter half-life of the 192Ir (73.83 d). The maximum ratio is located close to the tube. It reaches a value of 0.57 when the typical activity of the sources at the time when they were installed by the vendor was used. Such ratio increases up to 1.28 at the end of the recommended working life (90 d) of the Ir-192 source. Co-60/Ir-192 air-kerma ratios are almost constant (0.51-0.57) in the vicinity of the source-tube with recent installed sources. Nevertheless, air-kerma ratios increase rapidly (1.15-1.29) whenever the Ir-192 is approaching the end of its life. In case of a medical event requiring the medical staff to access the treatment room, these ratios indicate that the dosimetric impact on the medical team will be lower, with a few exceptions, in the case of Co-60-based HDR brachytherapy as compared to Ir-192-based one when typical air-kerma strength values are considered.  
  Address [Gimenez-Alventosa, Vicent; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386436100002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2839  
Permanent link to this record
 

 
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F. doi  openurl
  Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
  Year 2024 Publication Sensors and Actuators A-Physical Abbreviated Journal Sens. Actuator A-Phys.  
  Volume 365 Issue Pages 114859 - 10pp  
  Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement  
  Abstract (down) The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.  
  Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131902700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5876  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva