toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bridges, M.; Cranmer, K.; Feroz, F.; Hobson, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 012 - 23pp  
  Keywords Supersymmetry; Phenomenology  
  Abstract (down) We assess the coverage properties of confidence and credible intervals on the CMSSM parameter space inferred from a Bayesian posterior and the profile likelihood based on an ATLAS sensitivity study. In order to make those calculations feasible, we introduce a new method based on neural networks to approximate the mapping between CMSSM parameters and weak-scale particle masses. Our method reduces the computational effort needed to sample the CMSSM parameter space by a factor of similar to 10(4) with respect to conventional techniques. We find that both the Bayesian posterior and the profile likelihood intervals can significantly over-cover and identify the origin of this effect to physical boundaries in the parameter space. Finally, we point out that the effects intrinsic to the statistical procedure are conflated with simplifications to the likelihood functions from the experiments themselves.  
  Address [Bridges, Michael; Feroz, Farhan; Hobson, Mike] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England, Email: mb435@mrao.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 610  
Permanent link to this record
 

 
Author Bertone, G.; Cumberbatch, D.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Dark Matter searches: the nightmare scenario Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 004 - 24pp  
  Keywords dark matter theory; dark matter experiments; neutrino detectors; solar and atmospheric neutrinos  
  Abstract (down) The unfortunate case where the Large Hadron Collider (LHC) fails to discover physics Beyond the Standard Model (BSM) is sometimes referred to as the “Nightmare scenario” of particle physics. We study the consequences of this hypothetical scenario for Dark Matter (DM), in the framework of the constrained Minimal Supersymmetric Standard Model (cMSSM). We evaluate the surviving regions of the cMSSM parameter space after null searches at the LHC, using several different LHC configurations, and study the consequences for DM searches with ton-scale direct detectors and the IceCube neutrino telescope. We demonstrate that ton-scale direct detection experiments will be able to conclusively probe the cMSSM parameter space that would survive null searches at the LHC with 100 fb(-1) of integrated luminosity at 14TeV. We also demonstrate that IceCube (80 strings plus DeepCore) will be able to probe as much as similar or equal to 17% of the currently favoured parameter space after 5 years of observation.  
  Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland, Email: bertone@iap.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 937  
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Quantifying the tension between the Higgs mass and (g-2)(mu) in the constrained MSSM Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 1 Pages 015006 - 7pp  
  Keywords  
  Abstract (down) Supersymmetry has often been invoked as the new physics that might reconcile the experimental muon magnetic anomaly, a(mu), with the theoretical prediction (basing the computation of the hadronic contribution on e(+)e(-) data). However, in the context of the constrained minimal supersymmetric standard model (CMSSM), the required supersymmetric contributions (which grow with decreasing supersymmetric masses) are in potential tension with a possibly large Higgs mass (which requires large stop masses). In the limit of very large m(h) supersymmetry gets decoupled, and the CMSSM must show the same discrepancy as the standard model with a(mu). But it is much less clear for which size of m(h) does the tension start to be unbearable. In this paper, we quantify this tension with the help of Bayesian techniques. We find that for m(h) >= 125 GeV the maximum level of discrepancy given the current data (similar to 3.2 sigma) is already achieved. Requiring less than 3 sigma discrepancy, implies m(h) less than or similar to 120 GeV. For a larger Higgs mass we should give up either the CMSSM model or the computation of a(mu) based on e(+)e(-); or accept living with such an inconsistency.  
  Address [Cabrera, ME; Casas, JA] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: maria.cabrera@uam.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292547200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 680  
Permanent link to this record
 

 
Author Feroz, F.; Cranmer, K.; Hobson, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Challenges of profile likelihood evaluation in multi-dimensional SUSY scans Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 042 - 23pp  
  Keywords Supersymmetry Phenomenology  
  Abstract (down) Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MULTINEST, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration previously used in the literarture is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MULTINEST configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MULTINEST is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.  
  Address [Feroz, F; Hobson, M] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England, Email: f.feroz@mrao.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293136500042 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 745  
Permanent link to this record
 

 
Author Trotta, R.; Johannesson, G.; Moskalenko, I.V.; Porter, T.A.; Ruiz de Austri, R.; Strong, A.W. url  doi
openurl 
  Title Constraints on Cosmic-Ray Propagation Models from a Global Bayesian Analysis Type Journal Article
  Year 2011 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 729 Issue 2 Pages 106 - 16pp  
  Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical  
  Abstract (down) Research in many areas of modern physics such as, e. g., indirect searches for dark matter and particle acceleration in supernova remnant shocks rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma-rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions. The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, which uses astrophysical information, and nuclear and particle data as inputs to self-consistently predict CRs, gamma-rays, synchrotron, and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.  
  Address [Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000288608700029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 541  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva