toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nieves, J.; Sanchez, F.; Ruiz Simo, I.; Vicente Vacas, M.J. url  doi
openurl 
  Title Neutrino energy reconstruction and the shape of the charged current quasielastic-like total cross section Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 11 Pages 113008 - 9pp  
  Keywords  
  Abstract (up) We show that because of the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events, and a distortion of the total flux-unfolded cross-section shape is produced. This amounts to a redistribution of strength from high to low energies, which gives rise to a sizable excess (deficit) of low (high) energy neutrinos. This distortion of the shape leads to a good description of the MiniBooNE unfolded charged current quasielastic-like cross sections published by A. A. Aguilar-Arevalo et al. [(MiniBooNE Collaboration), Phys. Rev. D 81, 092005 (2010)]. However, these changes in the shape are artifacts of the unfolding process that ignores multinucleon mechanisms.  
  Address [Nieves, J.] Ctr Mixto Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305560500002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1077  
Permanent link to this record
 

 
Author Soriano, A.; Gonzalez, A.; Orero, A.; Moliner, L.; Carles, M.; Sanchez, F.; Benlloch, J.M.; Correcher, C.; Carrilero, V.; Seimetz, M. doi  openurl
  Title Attenuation correction without transmission scan for the MAMMI breast PET Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 648 Issue Pages S75-S78  
  Keywords Breast PET; Attenuation correction  
  Abstract (up) Whole-body Positron Emission Tomography (PET) scanners are required in order to span large Fields of View (FOV). Therefore, reaching the sensitivity and spatial resolution required for early stage breast tumor detection is not straightforward. MAMMI is a dedicated breast PET scanner with a ring geometry designed to provide PET images with a spatial resolution as high as 1.5 mm, being able to detect small breast tumors ( < 1 cm). The patient lays down in prone position during the scan, thus making possible to image the whole breast, up to regions close to the base of the pectoral without the requirement of breast compression. Attenuation correction (AC) for PET data improves the image quality and the quantitative accuracy of radioactivity distribution determination. In dedicated, high resolution breast cancer scanners, this correction would enhance the proper diagnosis in early disease stages. In whole-body PET scanners, AC is usually taken into account with the use of transmission scans, either by external radioactive rod sources or by Computed Tomography (CT). This considerably increases the radiation dose administered to the patient and time needed for the exploration. In this work we propose a method for breast shape identification by means of PET image segmentation. The breast shape identification will be used for the determination of the AC. For the case of a specific breast PET scanner the procedure we propose should provide AC similar to that obtained by transmission scans as we take advantage of the breast anatomical simplicity. Experimental validation of the proposed approach with a dedicated breast PET prototype is also presented. The main advantage of this method is an important dose reduction since the transmission scan is not required.  
  Address [Soriano, A.; Orero, A.; Moliner, L.; Carles, M.; Sanchez, F.; Benlloch, J. M.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: soriano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900021 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1069  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva