toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title Diabatic description of bottomoniumlike mesons Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 11 Pages 114016 - 13pp  
  Keywords  
  Abstract (up) We apply the diabatic approach, specially suited for a QCD based study of conventional (quark-antiquark) and unconventional (quark-antiquark + meson-meson) meson states, to the description of hidden-bottom mesons. A spectral analysis of the I = 0, J(++) and 1(--) resonances with masses up to about 10.8 GeV is carried out. Masses and widths of all the experimentally known resonances, including conventional and unconventional states, can be well reproduced. In particular, we predict a significant B (B) over bar* component in Upsilon(10580). We also predict the existence of a not yet discovered unconventional 1(++) narrow state, with a significant B-s(B) over bar (s)* content making it to decay into Upsilon(1S)phi, whose experimental discovery would provide definite support to our theoretical analysis.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular, Unidad Teor, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000663019400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4860  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title Diabatic description of charmoniumlike mesons Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 7 Pages 074002 - 19pp  
  Keywords  
  Abstract (up) We apply the diabatic formalism, first introduced in molecular physics, to the description of heavy-quark mesons. In this formalism the dynamics is completely described by a diabatic potential matrix whose elements can be derived from unquenched lattice QCD studies of string breaking. For energies far below the lowest open flavor meson-meson threshold, the resulting diabatic approach reduces to the well-known Born-Oppenheimer approximation where heavy-quark meson masses correspond to energy levels in an effective quark-antiquark potential. For energies close below or above that threshold, where the Born-Oppenheimer approximation fails, this approach provides a set of coupled Schrodinger equations incorporating meson-meson components nonperturbatively, i.e., beyond loop corrections. A spectral study of heavy mesons containing c (c) over bar with masses below 4.1 GeV is carried out within this framework. From it a unified description of conventional as well as unconventional resonances comes out.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, Unidad Teor, Inst Fis Corpuscular, CSIC, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576053400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4558  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title Coupled-channel meson-meson scattering in the diabatic framework Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 7 Pages 074025 - 16pp  
  Keywords  
  Abstract (up) We apply the diabatic framework, a QCD-based formalism for the unified study of quarkoniumlike systems in terms of heavy quark-antiquark and open-flavor meson-meson components, to the description of coupled-channel meson-meson scattering. For this purpose, we first introduce a numerical scheme to find the solutions of the diabatic Schrodinger equation for energies in the continuum, then we derive a general formula for calculating the meson-meson scattering amplitudes from these solutions. We thus obtain a completely nonperturbative procedure for the calculation of open-flavor meson-meson scattering cross sections from the diabatic potential, which is directly connected to lattice QCD calculations. A comprehensive analysis of various elastic cross sections for open-charm and open-bottom meson-meson pairs is performed in a wide range of the center-of-mass energies. The relevant structures are identified, showing a spectrum of quasiconventional and unconventional quarkoniumlike states. In addition to the customary Breit-Wigner peaks, we obtain nontrivial structures such as threshold cusps and minimums. Finally, our results are compared with existing data and with results from our previous bound-state-based analysis, finding full compatibility with both.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia CSIC, Unidad Teor, Inst Fis Corpusc, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000753716600003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5120  
Permanent link to this record
 

 
Author Ayala, C.; Gonzalez, P.; Vento, V. url  doi
openurl 
  Title Heavy quark potential from QCD-related effective coupling Type Journal Article
  Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 43 Issue 12 Pages 125002 - 12pp  
  Keywords general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia  
  Abstract (up) We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.  
  Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388219700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2870  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title Radiative decays in bottomonium beyond the long wavelength approximation Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 7 Pages 074001 - 13pp  
  Keywords  
  Abstract (up) We revisit the nonrelativistic quark model description of electromagnetic radiative decays in bottomonium. We show that even for the simplest spectroscopic quark model the calculated widths can be in good agreement with data once the experimental masses of bottomonium states and the photon energy are properly implemented in the calculation. For transitions involving the lower lying spectral states this implementation can be easily done via the long wavelength approximation. For transitions where this approximation does not apply we develop a new method of implementing the experimental energy dependencies.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000488508700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4164  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva