toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aguilar, A.C.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.; Santos, L.R. url  doi
openurl 
  Title Schwinger poles of the three-gluon vertex: symmetry and dynamics Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 10 Pages 889 - 20pp  
  Keywords  
  Abstract (up) The implementation of the Schwinger mechanism endows gluons with a nonperturbative mass through the formation of special massless poles in the fundamental QCD vertices; due to their longitudinal character, these poles do not cause divergences in on-shell amplitudes, but induce detectable effects in the Green's functions of the theory. Particularly important in this theoretical setup is the three-gluon vertex, whose pole content extends beyond the minimal structure required for the generation of a gluon mass. In the present work we analyze these additional pole patterns by means of two distinct, but ultimately equivalent, methods: the Slavnov-Taylor identity satisfied by the three-gluon vertex, and the nonlinear Schwinger-Dyson equation that governs the dynamical evolution of this vertex. Our analysis reveals that the Slavnov-Taylor identity imposes strict model-independent constraints on the associated residues, preventing them from vanishing. Approximate versions of these constraints are subsequently recovered from the Schwinger-Dyson equation, once the elements responsible for the activation of the Schwinger mechanism have been duly incorporated. The excellent coincidence between the two approaches exposes a profound connection between symmetry and dynamics, and serves as a nontrivial self-consistency test of this particular mass generating scenario.  
  Address [Aguilar, A. C.; Oliveira, B. M.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001118963200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5861  
Permanent link to this record
 

 
Author Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 1 Pages 014029 - 29pp  
  Keywords  
  Abstract (up) We determine the non-Abelian version of the four nontransverse form factors of the quark-gluon vertex, using exact expressions derived from the Slavnov-Taylor identity that this vertex satisfies. In addition to the quark and ghost propagators, a key ingredient of the present approach is the quark-ghost scattering kernel, which is computed within the one-loop dressed approximation. The vertex form factors obtained from this procedure are evaluated for arbitrary Euclidean momenta, and display features not captured by the well-known Ball-Chiu vertex, deduced from the Abelian (ghost-free) Ward identity. Particularly interesting in this analysis is the so-called soft-gluon limit, which, unlike other kinematic configurations considered, is especially sensitive to the approximations employed for the vertex entering in the quark-ghost scattering kernel, and may even be affected by a subtle numerical instability. As an elementary application of the results obtained, we evaluate and compare certain renormalization-point-independent combinations, which contribute to the interaction kernels appearing in the standard quark gap and Bethe-Salpeter equations. In doing so, even though all form factors of the quark-gluon vertex, and in particular the transverse ones which are unconstrained by our procedure, enter nontrivially in the aforementioned kernels, only the contribution of a single form factor, corresponding to the classical (tree-level) tensor, will be considered.  
  Address [Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406540300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3232  
Permanent link to this record
 

 
Author Nunes da Silva, T.; Chinellato, D.D.; Giannini, A.V.; Takahashi, J.; Ferreira, M.N.; Denicol, G.S.; Hippert, M.; Noronha, J.; Luzum, M. url  doi
openurl 
  Title Prehydrodynamic evolution in large and small systems Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 107 Issue 4 Pages 044901 - 12pp  
  Keywords  
  Abstract (up) We extend our previous investigation of the effects of prehydrodynamic evolution on final-state observables in heavy-ion collisions [38] to smaller systems. We use a state-of-the-art hybrid model for the numerical simulations with optimal parameters obtained from a previous Bayesian study. By studying p-Pb collisions, we find that the effects due to the assumption of a conformal evolution in the prehydrodynamical stage are even more important in small systems. We also show that this effect depends on the time duration of the pre-equilibrium stage, which is further enhanced in small systems. Finally, we show that the recent proposal of a free-streaming with subluminal velocity for the pre-equilibrium stage, thus effectively breaking conformal invariance, can alleviate the contamination of final-state observables. Our study further reinforces the need for moving beyond conformal approaches in pre-equilibrium dynamics modeling, especially when extracting transport coefficients from hybrid models in the high-precision era of heavy-ion collisions.  
  Address [da Silva, T. Nunes] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Dept Fis, Campus Univ Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, Brazil, Email: t.j.nunes@ufsc.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000974911400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5524  
Permanent link to this record
 

 
Author Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S. url  doi
openurl 
  Title Gluon propagator and three-gluon vertex with dynamical quarks Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 2 Pages 154 - 17pp  
  Keywords  
  Abstract (up) We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic “zero crossing” deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.  
  Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000517203200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4314  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J.; Santos, L.R. url  doi
openurl 
  Title Planar degeneracy of the three-gluon vertex Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 6 Pages 549 - 20pp  
  Keywords  
  Abstract (up) We present a detailed exploration of certain outstanding features of the transversely-projected three-gluon vertex, using the corresponding Schwinger-Dyson equation in conjunction with key results obtained from quenched lattice simulations. The main goal of this study is the scrutiny of the approximate property denominated “planar degeneracy”, unveiled when the Bose symmetry of the vertex is properly exploited. The planar degeneracy leads to a particularly simple parametrization of the vertex, reducing its kinematic dependence to essentially a single variable. Our analysis, carried out in the absence of dynamical quarks, reveals that the planar degeneracy is particularly accurate for the description of the form factor associated with the classical tensor, for a wide array of arbitrary kinematic configurations. Instead, the remaining three form factors display considerable violations of this property. In addition, and in close connection with the previous point, we demonstrate the numerical dominance of the classical form factor over all others, except in the vicinity of the soft-gluon kinematics. The final upshot of these considerations is the emergence of a very compact description for the three-gluon vertex in general kinematics, which may simplify significantly nonperturbative applications involving this vertex.  
  Address [Aguilar, A. C.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001117709800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5847  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva